Previous research indicates that children from lower socioeconomic backgrounds show deficits in aspects of attention, including a reduced ability to filter irrelevant information and to suppress prepotent responses. However, less is known about the neural mechanisms of group differences in attention, which could reveal the stages of processing at which attention deficits arise. The present study examined this question using an event-related brain potential (ERP) measure of selective auditory attention. Thirty-two children aged 3-to 8-years participated in the study. Children were cued to attend selectively to one of two simultaneously presented narrative stories. The stories differed in location (left/right speaker), narration voice (male/female), and content. ERPs were recorded to linguistic and non-linguistic probe stimuli embedded in the attended and unattended stories. Children whose mothers had lower levels of educational attainment (no college experience) showed reduced effects of selective attention on neural processing relative to children whose mothers had higher levels of educational attainment (at least some college). These differences occurred by 100 msec after probe onset. Furthermore, the differences were related specifically to a reduced ability to filter irrelevant information (i.e., to suppress the response to sounds in the unattended channel) among children whose mothers had lower levels of education. These data provide direct evidence for differences in the earliest stages of processing within neural systems mediating selective attention in children from different socioeconomic backgrounds. Results are discussed in the context of intervention programs aimed at improving attention and self-regulation abilities in children at-risk for school failure.
Using information from research on the neuroplasticity of selective attention and on the central role of successful parenting in child development, we developed and rigorously assessed a familybased training program designed to improve brain systems for selective attention in preschool children. One hundred forty-one lower socioeconomic status preschoolers enrolled in a Head Start program were randomly assigned to the training program, Head Start alone, or an active control group. Electrophysiological measures of children's brain functions supporting selective attention, standardized measures of cognition, and parent-reported child behaviors all favored children in the treatment program relative to both control groups. Positive changes were also observed in the parents themselves. Effect sizes ranged from one-quarter to half of a standard deviation. These results lend impetus to the further development and broader implementation of evidencebased education programs that target at-risk families.
The high rate of multiple stress exposures among the U.S. college population and the high impacts of stress on MH and suicidality point to an urgent need for service utilization strategies, especially among racial/ethnic, sexual, or gender minorities. Campuses must consider student experiences to mitigate stress during this developmental period.
To the extent that selective attention skills are relevant for academic foundations and amenable to training, they represent an important focus for the field of education. Here, drawing on research on the neurobiology of attention, we review hypothesized links between selective attention and processing across three domains important to early academic skills. First, we provide a brief review of the neural bases of selective attention, emphasizing the effects of selective attention on neural processing, as well as the neural systems important to deploying selective attention and managing response conflict. Second, we examine the developmental time course of selective attention. It is argued that developmental differences in selective attention are related to the neural systems important for deploying selective attention and managing response conflict. In contrast, once effectively deployed, selective attention acts through very similar neural mechanisms across ages. In the third section, we relate the processes of selective attention to three domains important to academic foundations: language, literacy, and mathematics. Fourth, drawing on recent literatures on the effects of video-game play and mind-brain training on selective attention, we discuss the possibility of training selective attention. The final section examines the application of these principles to educationally-focused attention-training programs for children.
Recent proposals suggest that some interventions designed to improve language skills might also target or train selective attention. The present study examined whether six weeks of high-intensity (100 min/day) training with a computerized intervention program designed to improve language skills would also influence neural mechanisms of selective auditory attention previously shown to be deficient in children with specific language impairment (SLI). Twenty children received computerized training, including 8 children diagnosed with SLI and 12 children with typically developing language. An additional 13 children with typically developing language received no specialized training (NoTx control group) but were tested and retested after a comparable time period to control for maturational and test-retest effects. Before and after training (or a comparable delay period for the NoTx control group), children completed standardized language assessments and an event-related brain potential (ERP) measure of selective auditory attention. Relative to the NoTx control group, children receiving training showed increases in standardized measures of receptive language. In addition, children receiving training showed larger increases in the effects of attention on neural processing following training relative to the NoTx control group. The enhanced effect of attention on neural processing represented a large effect size (Cohen's d=0.8), and was specific to changes in signal enhancement of attended stimuli. These findings indicate that the neural mechanisms of selective auditory attention, previously shown to be deficient in children with SLI, can be remediated through training and can accompany improvements on standardized measures of language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.