Natural and anthropogenic stressors typically do not occur in isolation; therefore, understanding ecological risk of contaminant exposure should account for potential interactions of multiple stressors. Realistically, common contaminants can also occur chronically in the environment. Because parental exposure to stressors may cause transgenerational effects on offspring, affecting their ability to cope with the same or novel environmental stressors, the exposure histories of generations preceding that being tested should be considered. To examine multiple stressor and parental exposure effects we employed a 2 × 2 × 2 factorial design in outdoor 1000-L mesocosms (n = 24). Larval southern toads (Anaxyrus terrestris), bred from parents collected from reference and metal-contaminated sites, were exposed to two levels of both an anthropogenic (copper-0, 30 µg/L Cu) and natural (predator cue - present/absent) stressor and reared to metamorphosis. Toads from the metal-contaminated parental source population were smaller at metamorphosis and had delayed development; i.e., a prolonged larval period. Similarly, larval Cu exposure also reduced size at metamorphosis and prolonged the larval period. We, additionally, observed a significant interaction between larval Cu and predator-cue exposure on larval period, wherein delayed emergence was only present in the 30-µg/L Cu treatments in the absence of predator cues. The presence of parental effects as well as an interaction between aquatic stressors on commonly measured endpoints highlight the importance of conducting multistressor studies across generations to obtain data that are more relevant to field conditions in order to determine population-level effects of contaminant exposure.
Species with complex life cycles are susceptible to environmental stressors across life stages, but the carryover and latent effects between stages remain understudied. For species with biphasic life histories, such as pond-breeding amphibians, delayed effects of aquatic conditions can influence terrestrial juveniles and adults directly or indirectly, usually mediated through fitness correlates such as body size. We collected adult southern toads (Anaxyrus terrestris) from 2 source populations-a natural reference wetland and a metal-contaminated industrial wetland-and exposed their offspring to 2 aquatic stressors (a metal contaminant, copper [Cu], and a dragonfly predator cue) in outdoor mesocosms (n = 24). We then reared metamorphs in terraria for 5 mo to examine delayed effects of early life stage environmental conditions on juvenile performance, growth, and survival. Larval exposure to Cu, as well as having parents from a contaminated wetland, resulted in smaller size at metamorphosis-a response later negated by compensatory growth. Although Cu exposure and parental source did not affect larval survival, we observed latent effects of these stressors on juvenile survival, with elevated Cu conditions and metal-contaminated parents reducing postmetamorphic survival. Parental source and larval Cu exposure affected performance at metamorphosis through carryover effects on body size but, 1 mo later, latent effects of parental source and larval predator exposure directly (i.e., not via body size) influenced performance. The carryover and latent effects of parental source population and aquatic Cu level on postmetamorphic survival and juvenile performance highlight the importance of conducting studies across life stages and generations. Environ Toxicol Chem 2018;37:2660-2669. © 2018 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.