Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double‐digest restriction‐site‐associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kauaʻi, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kauaʻi can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island‐like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.
Climatic shifts to warmer and often drier conditions are challenging terrestrial species worldwide. These shifts are occurring more rapidly at higher elevations and latitudes, likely causing disproportionate effects to mammalian hibernators there. While there is some information about how these species' ranges are responding to climatic shifts, we lack an understanding of how climate components are affecting species' life history variation, which is key to individual success and population‐level resilience. We reviewed the literature to identify the direction of life history responses to climate change in mammalian hibernators along three axes: latitudinal, elevational and temporal. We found 39 studies involving 27 species that reported climate effects on our four target life history traits – phenology, body mass/condition and growth, reproduction and survival. We found warmer temperatures are advancing hibernator phenology and increasing reproductive success. By contrast, warming and drying trends are having uncertain effects on body condition, and complex effects on survival – depending on season, age class, latitude and elevation. We found no pattern of significant climate‐trait outcomes by duration or decade of study. More research on drought conditions – particularly in relation to resource availability – would help inform hibernator susceptibility to increased drying trends expected to intensify globally. Notably, our results are highly biased towards small mammal hibernators in Northern Hemisphere alpine/mountain ecosystems, with few long‐term studies conducted on Southern Hemisphere hibernators. This review highlights that phenological shifts constitute one of the most obvious consequences of climate change, yet, the timing of life history events (e.g. timing of migration, reproduction, hibernation) remains poorly understood. Further integration of insights from physiologists, evolutionary biologists and population ecologists working on wild populations will improve our collective understanding of the effects of seasonal climatic shifts on mammalian hibernator life history traits, key drivers of their population‐level persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.