The seeding density of therapeutic cells in engineered tissue impacts both cell survival and vascularization. Excessively high seeded cell densities can result in increased death and thus waste of valuable cells, whereas lower seeded cell densities may not provide sufficient support for the tissue in vivo , reducing efficacy. Additionally, the production of growth factors by therapeutic cells in low oxygen environments offers a way of generating growth factor gradients, which are important for vascularization, but hypoxia can also induce unwanted levels of cell death. This is a complex problem that lends itself to a combination of computational modelling and experimentation. Here, we present a spatio-temporal mathematical model parametrized using in vitro data capable of simulating the interactions between a therapeutic cell population, oxygen concentrations and vascular endothelial growth factor (VEGF) concentrations in engineered tissues. Simulations of collagen nerve repair constructs suggest that specific seeded cell densities and non-uniform spatial distributions of seeded cells could enhance cell survival and the generation of VEGF gradients. These predictions can now be tested using targeted experiments.
BackgroundPeriodontitis (PD) and type 2 diabetes (T2D) are characterized by increased mitochondrial oxidative stress production (mtROS), which has been associated with a greater risk of cardiovascular diseases (CVD). Intensive PD treatment (IPT) can significantly improve endothelial function and metabolic control, although the mechanisms remain unclear. We explored whether, in patients with PD and T2D, changes of mtROS are associated with improvement of endothelial function and metabolic control after IPT.Methods51 patients with T2D and PD were enrolled in a single-blind controlled trial and randomised to either intensive (n = 27) or standard (CPT, n = 24) PD treatment. Levels of mtROS in peripheral blood mononuclear cells (PBMC) were measured using a FACS-based assay at baseline and 24 h, 1 week, 2 and 6 months after PD treatment. Inflammatory cytokines, CVD risk factors, metabolic control and endothelial function were assessed at baseline and 6 months after intervention.ResultsAfter 6 months from PD treatment, the IPT group had lower mtROS (in both the whole PBMC and lymphocytes), circulating levels of HbA1c, glucose, INF-γ, TNF-α (p < 0.05 for all), and improved endothelial function (p < 0.05) compared to the CPT group. There was an association between higher mtROS and lower endothelial function at baseline (r = −0.39; p = 0.01) and, in the IPT group, changes of mtROS were associated with changes of endothelial function (r = 0.41; p < 0.05).ConclusionsReduced mtROS is associated with improved endothelial function and accompanied by better metabolic control in patients with T2D and PD. mtROS could represent a novel therapeutic target to prevent CVD in T2D.
Artificial tissues constructed from therapeutic cells offer a promising approach for improving the treatment of severe peripheral nerve injuries. In this study the effectiveness of using CTX0E03, a conditionally immortalised human neural stem cell line, as a source of allogeneic cells for constructing living artificial nerve repair tissue was tested. CTX0E03 cells were differentiated then combined with collagen to form engineered neural tissue (EngNT-CTX), stable aligned sheets of cellular hydrogel. EngNT-CTX sheets were delivered within collagen tubes to repair a 12 mm sciatic nerve injury model in athymic nude rats. Autologous nerve grafts (autografts) and empty tubes were used for comparison. After 8 weeks functional repair was assessed using electrophysiology. Further, detailed histological and electron microscopic analysis of the repaired nerves was performed. Results indicated that EngNT-CTX supported growth of neurites and vasculature through the injury site and facilitated reinnervation of the target muscle. These findings indicate for the first time that a clinically validated allogeneic neural stem cell line can be used to construct EngNT. This provides a potential ‘off the shelf’ tissue engineering solution for the treatment of nerve injury, overcoming the limitations associated with nerve autografts or the reliance on autologous cells for populating repair constructs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.