In this paper, we seek the conjugate gradient direction closest to the direction of the scaled memoryless BFGS method and propose a family of conjugate gradient methods for unconstrained optimization. An improved Wolfe line search is also proposed, which can avoid a numerical drawback of the Wolfe line search and guarantee the global convergence of the conjugate gradient method under mild conditions. To accelerate the algorithm, we develop an adaptive strategy to choose the initial stepsize and introduce dynamic restarts along negative gradients based on how the function is close to some quadratic function during some previous iterations. Numerical experiments with the CUTEr collection show that the proposed algorithm is promising.
Background
Medical datasets, especially medical images, are often imbalanced due to the different incidences of various diseases. To address this problem, many methods have been proposed to synthesize medical images using generative adversarial networks (GANs) to enlarge training datasets for facilitating medical image analysis. For instance, conventional methods such as image-to-image translation techniques are used to synthesize fundus images with their respective vessel trees in the field of fundus image.
Methods
In order to improve the image quality and details of the synthetic images, three key aspects of the pipeline are mainly elaborated: the input mask, architecture of GANs, and the resolution of paired images. We propose a new preprocessing pipeline named multiple-channels-multiple-landmarks (MCML), aiming to synthesize color fundus images from a combination of vessel tree, optic disc, and optic cup images. We compared both single vessel mask input and MCML mask input on two public fundus image datasets (DRIVE and DRISHTI-GS) with different kinds of Pix2pix and Cycle-GAN architectures. A new Pix2pix structure with ResU-net generator is also designed, which has been compared with the other models.
Results and conclusion
As shown in the results, the proposed MCML method outperforms the single vessel-based methods for each architecture of GANs. Furthermore, we find that our Pix2pix model with ResU-net generator achieves superior PSNR and SSIM performance than the other GANs. High-resolution paired images are also beneficial for improving the performance of each GAN in this work. Finally, a Pix2pix network with ResU-net generator using MCML and high-resolution paired images are able to generate good and realistic fundus images in this work, indicating that our MCML method has great potential in the field of glaucoma computer-aided diagnosis based on fundus image.
Microaneurysms (MAs) play an important role in the diagnosis of clinical diabetic retinopathy at the early stage. Annotation of MAs manually by experts is laborious and so it is essential to develop automatic segmentation methods. Automatic MA segmentation remains a challenging task mainly due to the low local contrast of the image and the small size of MAs. A deep learning-based method called U-Net has become one of the most popular methods for the medical image segmentation task. We propose an architecture for U-Net, named deep recurrent U-Net (DRU-Net), obtained by combining the deep residual model and recurrent convolutional operations into U-Net. In the MA segmentation task, DRU-Net can accumulate effective features much better than the typical U-Net. The proposed method is evaluated on two publicly available datasets: E-Ophtha and IDRiD. Our results show that the proposed DRU-Net achieves the best performance with 0.9999 accuracy value and 0.9943 area under curve (AUC) value on the E-Ophtha dataset. And on the IDRiD dataset, it has achieved 0.987 AUC value (to our knowledge, this is the first result of segmenting MAs on this dataset).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.