王林发) 186 • Guoping Wang (王国平) 85 • Yanxiang Wang (王雁翔) 85 • Yaqin Wang (王亚琴) 38 • Muhammad Waqas 187 • Tàiyún Wèi (魏太云) 188 • Shaohua Wen (温少华) 85 • Anna E. Whitfield 189 • John V. Williams 190 • Yuri I. Wolf 99 • Jiangxiang Wu (吴建祥) 38 • Lei Xu (徐雷) 138 • Hironobu Yanagisawa (栁澤広 宣) 191 • Caixia Yang (杨彩霞) 69 • Zuokun Yang (杨作坤) 85 • F. Murilo Zerbini 192 • Lifeng Zhai (翟立峰) 193 • Yong-Zhen Zhang (张永振) 220,221 • Song Zhang (张松) 34 • Jinguo Zhang (张靖国) 194 • Zhe Zhang (张哲) 85 • Xueping Zhou (周雪平) 195
Alzheimer's disease (AD) is the most common neurodegenerative disorder with a continuous pathophysiological process starting from the preclinical and mild cognitive impairment (MCI) phases to the dementia phase. Early diagnosis is prerequisite for the early intervention of AD but meanwhile challenging. Amyloid-beta 1−42 (Aβ 42 ) plays a crucial part in AD pathology. Positron-emission tomography (PET) imaging of Aβ 42 in the brain and the measurement of Aβ 42 in the cerebrospinal fluid (CSF) have been adopted for the auxiliary diagnosis of AD, but their widespread clinical application has been limited due to the radiation and the high-cost of PET and the invasive lumbar puncture for collecting CSF. Noninvasive and cost-effective blood-based assay is desirable for the early diagnosis of AD. Here, a label-free assay for the quantification of blood Aβ 42 was developed using the high-throughput surface plasmon resonance imaging method with the aid of an antibody-mimetic peptoid nanosheet equipping Aβ 42 -recognizing loops. We demonstrated that this nanosheet-based sensor system could distinguish the plasma and sera from normal individuals and patients suffering AD and amnestic MCI with high sensitivity and specificity, preceding the diagnostic performance of the Aβ 42 -recognizing molecule and the antibody specific to Aβ 42 . This work provides a label-free, cost-effective, highly sensitive, and high-throughput blood-based assay for early detection of AD.
Objectives Spinal cord injury (SCI) is associated with severe autonomic dysfunction. Patients with SCI often suffer from a lack of central nervous system control over the gastrointestinal system. Therefore, we hypothesized that patients with SCI would cause intestinal flora imbalance. We investigated alterations in the fecal microbiome in a group of patients with SCI. Methods Microbial communities in the feces of 23 patients and 23 healthy controls were investigated using high-throughput Illumina Miseq sequencing targeting the V3-V4 region of the 16S ribosomal RNA (rRNA) gene. The relative abundances between the fecal microbiota at the genus level in patients with SCI and healthy individuals were determined using cluster analysis. Results The structure and quantity of fecal microbiota differed significantly between patients with SCI and healthy controls, but the richness and diversity were not significantly different. A two-dimensional heatmap showed that the relative abundances of forty-five operational taxonomic units (OTUs) were significantly enriched either in SCI or healthy samples. Among these, 18 OTUs were more abundant in healthy controls than in patients with SCI, and 27 OTUs were more abundant in the SCI group than in healthy controls. Conclusion Our study showed that patients with SCI exhibited microbiome dysbiosis.
A previously unreported disease affecting jujube ( Ziziphus jujuba Mill.) trees was observed in China (Liaoning province) in 2015 and named jujube yellow mottle disease (JYMD), due to prevalent symptoms on the leaves. Diseased plants produced also malformed and discolored fruits. In an attempt to identify the possible causal agent of JYMD, high-throughput sequencing of small RNA libraries was performed and a novel virus, tentatively named jujube yellow mottle-associated virus (JYMaV), was identified and characterized. Six genomic RNA segments of JYMaV were completely sequenced. Each one contains a single open reading frame in the viral complementary strand and two untranslated regions with complementary 5′ and 3′ terminal ends, thus showing typical features of other negative-stranded RNA viruses. RNA1 (7.1 kb), RNA2 (2.2 kb) and RNA3 (1.2 kb) encode putative proteins that, based on their conserved motifs, have been identified as the RNA dependent RNA polymerase, the glycoprotein and the nucleocapsid protein, respectively. These proteins share significant sequence identity (52.1–70.4%) with proteins encoded by raspberry leaf blotch virus (RLBV). RNA4 (1.5 kb) and RNA5 (1.2 kb) code for two putative 30 K movement proteins also related to the homologous RLBV protein. The functional role of the protein encoded by JYMaV RNA6 remains unknown. These data together with the phylogenetic relationships of JYMaV with other recognized emaraviruses support the proposal that JYMaV is the representative member of a novel species in the genus Emaravirus . In agreement with this proposal, virus-like particles and double-membrane-bound bodies, similar to those previously reported for other emaraviruses, were observed by transmission electron microscopy in extracts and tissues from symptomatic leaves, respectively. A specific RT-PCR-based detection method has been developed and used in a preliminary field survey that provided results strongly supporting the close association of JYMaV with the novel disease.
Drug-induced anesthesia combined with electroacupuncture (EA) in patients has been put into practice in recent years in China. In this study, we showed the effectiveness of EA on the speed of post-operative recovery of patients undergoing supratentorial craniotomy and the potential clinical mechanism of EA. Dual channel electrical stimulator made by HANS Beijing connected the following acupoints respectively: LI4 (Hegu), SJ5 (Waiguan), ST36 (Zusanli), BL63 (Jinmen), LR3 (Taichong), and GB40 (Qiuxu). Disperse-dense and symmetric biphasic pulse waves were selected, frequency of waves (pulse rates) were 2Hz/100Hz, altered/3sec; pulse duration was 0.6ms/0.2ms, 2Hz: 0.6ms, 100Hz: 0.2ms; symmetric biphasic pulse wave. We found that the EA-group required 9.62% less sevoflurane than the sham EA-group (P<0.05). During recovery from anesthesia, the autonomous respiration recovery time, tracheo-tube removal time, eye-opening time, voluntary motor recovery time, orientation force recovery time, and the operating-room departure time of the EA-group were all significantly shortened 35.86%, 27.07%, 38.38%, 30.11%, 34.95%, 28.80% than the corresponding sham EA-group, respectively (P<0.05). The serum enkephalin values were elevated in the EA group versus the sham EA-group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.