Background
Cardiovascular diseases (CVDs) and diabetes mellitus (DM) are top two chronic comorbidities that increase the severity and mortality of COVID‐19. However, how SARS‐CoV‐2 alters the progression of chronic diseases remain unclear.
Methods
We used adenovirus to deliver h‐ACE2 to lung to enable SARS‐CoV‐2 infection in mice. SARS‐CoV‐2’s impacts on pathogenesis of chronic diseases were studied through histopathological, virologic and molecular biology analysis.
Results
Pre‐existing CVDs resulted in viral invasion, ROS elevation and activation of apoptosis pathways contribute myocardial injury during SARS‐CoV‐2 infection. Viral infection increased fasting blood glucose and reduced insulin response in DM model. Bone mineral density decreased shortly after infection, which associated with impaired PI3K/AKT/mTOR signaling.
Conclusion
We established mouse models mimicked the complex pathological symptoms of COVID‐19 patients with chronic diseases. Pre‐existing diseases could impair the inflammatory responses to SARS‐CoV‐2 infection, which further aggravated the pre‐existing diseases. This work provided valuable information to better understand the interplay between the primary diseases and SARS‐CoV‐2 infection.
Dysfunctional Wnt signaling is associated with Alzheimer's disease (AD), and activation of the Wnt signaling pathway inhibits AD development. Dickkopf 3 (Dkk3) is a modulator of the Wnt signaling pathway and is physiologically expressed in the brain. The role of Dkk3 in the pathogenesis of AD has not been evaluated. In the present study, we determined that Dkk3 expression was significantly decreased in brain tissue from AD patients and the AD transgenic mouse model APPswe/PS1dE9 (AD mice). Transgenic mice with brain tissue-specific Dkk3 expression were generated or crossed with AD mice to study the effects of Dkk3 on AD. In AD mice, transgenic expression of Dkk3 improved abnormalities in learning, memory, and locomotor activity, reduced the accumulation of amyloid-β, and ameliorated glucose uptake deficits. Furthermore, we determined that Dkk3 downregulated GSK-3β, a central negative regulator in canonical Wnt signaling, and upregulated PKCβ1, a factor implicated in noncanonical Wnt signaling. This indicates that increased activation of GSK-3β and the inhibition of PKCβ1 in AD patients may be responsible for the dysfunctional Wnt signaling in AD. In summary, our data suggest that Dkk3 is an agonist of Wnt signaling, and the ability of transgenic expression of Dkk3 to compensate for the decrease in Dkk3 expression in AD mice, reverse dysfunctional Wnt signaling, and partially inhibit the pathological development of AD suggests that Dkk3 could serve as a therapeutic target for the treatment of AD.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.