In this paper, the periodic solutions of the equation of Friedmann–Robertson–Walker cosmology with a cosmological constant are investigated. Using variable transformation, the original second-order ordinary differential equation is converted to a planar dynamical system with cosmic time t. Numerical simulations indicate that period function T(h) of this dynamical system is monotonically increasing. However, a new planar dynamical system could be deduced by using conformal time variable [Formula: see text]. We prove that the new planar dynamical system has two isochronous centers under certain parameter conditions by using Picard–Fuchs equation. Explicitly, we find that there exist two families of periodic solutions with equal period for the new planar dynamical system which is derived from the Friedmann–Robertson–Walker model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.