Atmospheric pressure loading (APL) deformation is one component of nontectonic deformation for Global Navigation Satellite System (GNSS) time series and is a kind of deformation response caused by a redistribution of atmospheric pressure. In this paper, we present an atmospheric data processing strategy to compute the APL based on a spherical harmonic expansion of the global atmosphere pressure changes. We also provide a sample model to describe the relativity between the global atmosphere pressure changes and APL vertical deformation. The results show that the variation of air mass has a major impact on the north-eastern area of East China, the eastern area of North China, and Northeast China, and the vertical crustal displacement caused by the atmosphere changes in these regions can reach about 20 mm. The correction of APL for vertical time series of GNSS reference stations in different regions indicates that the arid area of the Northwest China, Northeast China, Central China, and North China are greatly affected by APL. While for the station located in Sichuan-Yunnan region, the amplitude and period change are small after correction of APL for vertical time series of GNSS reference stations, which reveals that the area is seriously affected by tectonic movement and water migration loading. The correlation between atmospheric pressure changes and crustal deformation is analyzed, which shows that APL has a serious impact on the north-eastern area of North China, the Northeast China, and the eastern area of Central China when the variations in atmospheric pressure in mainland China are the same. The research results of this paper will provide some reference value for the study of crustal structural deformation and the establishment of geodetic datum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.