In this paper, an electricity-fluorescence double-checking biosensor based on graphene materials has been presented for detection of DNA hybridization kinetics.
Compared to conventional chemical sensors, this paper presented a chemical sensor system with broad selectivity for a variety of molecules without any surface modification.
A kind of graphene foam chemical sensor (GFCS) system based on the principal component analysis (PCA) and backpropagation neural network (BPNN) was presented in this paper. Compared with conventional chemical sensors, the GFCS could discriminate various chemical molecules with selectivity without surface modification. The GFCS system consisted of an unmodified graphene foam chemical sensor, an electrical resistance time domain detection system (ERTDS), and a pattern recognition module. The GFCS has been validated via several chemical molecules discrimination including chloroform, acetone, and ether. The experimental results showed that the discrimination accuracy for each molecule exceeded 97% and a single measurement can be achieved in ten minutes. This work may have presented a new strategy for research and application for graphene chemical sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.