The fluoride-free fabrication of superhydrophobic materials for the separation of oil/water mixtures has received widespread attention because of frequent offshore oil exploration and chemical leakage. In recent years, oil/water separation materials, based on metal meshes, have drawn much attention, with significant advantages in terms of their high mechanical strength, easy availability, and long durability. However, it is still challenging to prepare superhydrophobic metal meshes with high-separation capacity, low costs, and high recyclability for dealing with oil–water separation. In this work, a superhydrophobic and super oleophilic stainless steel mesh (SSM) was successfully prepared by anchoring Fe2O3 nanoclusters (Fe2O3-NCs) on SSM via the in-situ flame synthesis method and followed by further modification with octadecyltrimethoxysilane (OTS). The as-prepared SSM with Fe2O3-NCs and OTS (OTS@Fe2O3-NCs@SSM) was confirmed by a field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and X-ray diffractometer (XRD). The oil–water separation capacity of the sample was also measured. The results show that the interlaced and dense Fe2O3-NCs, composed of Fe2O3 nanoparticles, were uniformly coated on the surface of the SSM after the immerging-burning process. Additionally, a compact self-assembled OTS layer with low surface energy is coated on the surface of Fe2O3-NCs@SSM, leading to the formation of OTS@Fe2O3-NCs@SSM. The prepared OTS@Fe2O3-NCs@SSM shows excellent superhydrophobicity, with a water static contact angle of 151.3°. The separation efficiencies of OTS@Fe2O3-NCs@SSM for the mixtures of oil/water are all above 98.5%, except for corn oil/water (97.5%) because of its high viscosity. Moreover, the modified SSM exhibits excellent stability and recyclability. This work provides a facile approach for the preparation of superhydrophobic and super oleophilic metal meshes, which will lead to advancements in their large-scale applications on separating oil/water mixtures.
Due to the continuous occurrence of water pollution problems, practical separation methods for oil–water mixtures have attracted more and more attention. To date, different kinds of materials have been developed with good hydrophobic properties and strong separation ability. Carbon aerogels, as a promising ideal adsorbent for dealing with oil-spill accidents, have received extensive attention. In this work, zeolitic imidazolate frameworks (ZIFs), nanoparticles, and carbon nanotubes (CNTs) in the three-dimensional (3D) interconnected network structure of cotton balls (CBs) were successfully prepared by a simple and scalable process. The as-prepared carbonized CBs with carbonized ZIF-8 and CNTs (CZIF-8/CNTs/CCBs) were characterized. The oil–water separation performance of the composite was also measured. The results show that the ZIF-8 clusters intercalated with abundant CNTs are fully loaded into the porous structure of the CBs after the in situ synthesis process. Additionally, ZIF-8/CNTs/CBs was carbonized in nitrogen, leading to the formation of CZIF-8/CNTs/CCBs. The prepared material possesses excellent hydrophobicity with a water contact angle of 152.7°, showing good absorption capacities Q1 in the range of 48 to 84 times its original weight for oil and organic liquids. In addition, CZIF-8/CNTs/CCBs exhibits good recyclability in the absorption–distillation test. In summary, this study proposes a novel and simple method for the preparation of a superhydrophobic material that could have wide application in the separation of oil–water mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.