Molecules with strong two‐photon absorption (TPA) are important in many advanced applications such as upconverted laser and photodynamic therapy, but their design is hampered by the high cost of experimental screening and accurate quantum chemical (QC) calculations. Here a systematic study is performed by collecting an experimental TPA database with ≈900 molecules, analyzing with interpretable machine learning (ML) the key molecular features explaining TPA magnitudes, and building a fast ML model for predictions. The ML model has prediction errors of similar magnitude compared to experimental and affordable QC methods errors and has the potential for high‐throughput screening as additionally validated with the new experimental measurements. ML feature analysis is generally consistent with common beliefs which is quantified and rectified. The most important feature is conjugation length followed by features reflecting the effects of donor and acceptor substitution and coplanarity.
The understanding of charge transport at single-molecule level is a pre-requisite for the fabrication of molecular devices. Here, we systematically investigate the relation among molecular conductance, substitution pattern and stimuli...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.