A method is presented to suppress grating lobes in beamforming using phase unwrapping and array interpolation. When the phase of each cross spectrum is successfully unwrapped, the magnitude and phase of the cross spectral matrix may be interpolated; for cases where these quantities vary smoothly, interpolation is straightforward, even above the spatial Nyquist frequency. Two applications are presented: localization of a broadband source and characterization of a source with frequency-dependent location. In both cases, grating lobes are suppressed and the source is localized at frequencies up to at least 8 times the spatial Nyquist frequency.
This paper describes the development and presentation of a Science, Technology, Engineering, Arts, and Math (STEAM) workshop for elementary school teachers designed to provide ideas and tools for using acoustics in the classroom. The abundant hands-on activities and concepts in acoustics naturally link science and music in an intuitive way that can assist teachers in moving forward on the STEAM initiative. Our workshop gave teachers an introduction to acoustics principles and demonstrations that can be used to tie STEAM techniques in with Utah State Education Core standards. These hands-on demonstrations and real-world applications provide an avenue to engage students and support learning outcomes. Feedback indicated that the participants learned from and enjoyed the initial implementation of this workshop, though many elementary school teachers did not immediately see how they could integrate it into their curriculum. While additional efforts might be made to better focus the training workshop for the K-6 level, curriculum developers need to appreciate how acoustics could be used more broadly at the elementary school level if the emphasis changes from STEM to STEAM.
Research has shown that using acoustic radiation modes combined with surface velocity measurements provide an accurate method of measuring the radiated sound power from vibrating plates. This paper investigates the extension of this method to acoustically radiating cylindrical structures. The mathematical formulations of the radiation resistance matrix and the accompanying acoustic radiation modes of a baffled cylinder are developed. Computational sound power calculations using the vibration-based radiation mode (VBRM) method and the boundary element method are then compared and shown to have good agreement. Experimental surface velocity measurements of a cylinder are taken using a scanning laser Doppler vibrometer and the VBRM method is used to calculate sound power. The results are compared to sound power measurements taken using ISO 3741.
This paper describes the development and presentation of a Science, Technology, Engineering, Arts, and Math (STEAM) workshop for elementary school teachers designed to provide ideas and tools for using acoustics in the classroom. The abundant hands-on activities and concepts in acoustics naturally link science and music in an intuitive way that can assist teachers in moving forward on the STEAM initiative. Our workshop gave teachers an introduction to acoustics principles and demonstrations that can be used to tie in STEAM techniques with Utah State Education Core standards. These hands-on demonstrations and real-world applications provide an avenue to engage students and support learning outcomes. Feedback indicated that the participants learned from and enjoyed the initial implementation of this workshop, though many elementary school teachers did not immediately see how they could integrate it into their curriculum. While additional efforts might be made to better focus the training workshop for the K-6 level, curriculum developers need to appreciate how acoustics could be used more broadly at the elementary school level if the emphasis changes from STEM to STEAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.