As part of the Intelligence Advanced Research Projects Activity (iARPA) Great Horned Owl (GHO) program, Southwest Research Institute® (SwRI®) developed and tested a small gas turbine for power generation in Unmanned Aerial Vehicles (UAV). This development program focused on advancing the state of the art in UAV power systems by meeting key metrics in weight, fuel efficiency, and noise generation. Design, assembly, and testing of the gas turbine were completed in-house at SwRI. Fundamental mechanical design features of the gas turbine include an integrated 7 kW motor-generator, minimal oil lubrication system, cantilevered compressor/turbine assembly, and can combustor with air-atomizing fuel nozzles. The compressor/turbine assembly is cantilevered directly off of the motor-generator shaft, which spins on hybrid ceramic bearings. Due to potential rotor natural frequencies in the design operating range, the rotor-dynamic design of this configuration was a special design challenge. The outboard rotor bearing is softly supported on O-rings to provide compliance and drive shaft natural frequencies below the operating range. The lube oil system is another interesting design feature of the GHO gas turbine. It is based on a minimal oil lubrication system previously used at SwRI. The minimal oil lubrication system relies on low oil flow rates and cooling air to pull droplets of oil through the bearing. The oil passes through the machine and is consumed during combustion. This system eliminates traditional oil recirculation hardware for simplicity and weight savings. The can combustor features a modular design and uses additive manufacturing techniques to facilitate easy and cost effective prototyping. All combustor components are manufactured from Inconel 718 using direct metal laser sintering (DMLS) with additional post-machining. These parts are particularly challenging for DMLS because of their thin walls and high aspect ratio. The custom air-atomizing fuel nozzles also highlight one of the exciting advantages of the DMLS process. Each nozzle would be difficult to machine using traditional techniques because of the tight internal flow passages; however, they are simple to construct using additive manufacturing. The GHO turbine developed by SwRI demonstrates interesting design features including a minimal oil lubrication system, a cantilever shaft with softly supported bearing, and combustor components built using additive manufacturing techniques. This design provides a platform for further development, testing, and demonstration of small gas turbine technology for UAV power generation.
She graduated from Ohio State University in 2015 with a PhD in Chemical Engineering, and is interested in student learning in engineering. In particular, her work focuses on various aspects of students' development from novice to expert, including development of engineering intuition, as well as critical thinking, problem-solving, and communication skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.