The human body is comprised of numerous types of cartilage with a range of high moduli, despite their high hydration. Owing to the limitations of cartilage tissue healing and biological grafting procedures, synthetic replacements have emerged but are limited by poorly matched moduli. While conventional hydrogels can achieve similar hydration to cartilage tissues, their moduli are substantially inferior. Herein, triple network (TN) hydrogels are prepared to synergistically leverage intra-network electrostatic repulsive and hydrophobic interactions, as well as inter-network electrostatic attractive interactions. They are comprised of an anionic 1 st network, a neutral 2 nd network (capable of hydrophobic associations), and a cationic 3 rd network. Collectively, these interactions act synergistically as effective, yet dynamic crosslinks. By tuning the concentration of the cationic 3 rd network, these TN hydrogels achieve high moduli of ≈1.5 to ≈3.5 MPa without diminishing cartilage-like water contents (≈80%), strengths, or toughness values. This unprecedented combination of properties poises these TN hydrogels as cartilage substitutes in applications spanning articulating joints, intervertebral discs (IVDs), trachea, and temporomandibular joint disc (TMJ).
Cartilage has an intrinsically low healing capacity, thereby requiring surgical intervention. However, limitations of biological grafting and existing synthetic replacements have prompted the need to produce cartilage-mimetic substitutes. Cartilage tissues perform critical functions that include load bearing and weight distribution, as well as articulation. These are characterized by a range of high moduli (≥1 MPa) as well as high hydration (60–80%). Additionally, cartilage tissues display spatial heterogeneity, resulting in regional differences in stiffness that are paramount to biomechanical performance. Thus, cartilage substitutes would ideally recapitulate both local and regional properties. Toward this goal, triple network (TN) hydrogels were prepared with cartilage-like hydration and moduli as well as adhesivity to one another. TNs were formed with either an anionic or cationic 3rd network, resulting in adhesion upon contact due to electrostatic attractive forces. With the increased concentration of the 3rd network, robust adhesivity was achieved as characterized by shear strengths of ∼80 kPa. The utility of TN hydrogels to form cartilage-like constructs was exemplified in the case of an intervertebral disc (IVD) having two discrete but connected zones. Overall, these adhesive TN hydrogels represent a potential strategy to prepare cartilage substitutes with native-like regional properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.