Ketoconazole is a potent CYP3A4/5 inhibitor and, until recently, recommended by the Food and Drug Administration (FDA) and the European Medicines Agency as a strong CYP3A4/5 inhibitor in clinical drug-drug interaction (DDI) studies. Ketoconazole sporadically causes liver injury or adrenal insufficiency. Because of this, the FDA and European Medicines Agency recommended suspension of ketoconazole use in DDI studies in 2013. The FDA specifically recommended use of clarithromycin or itraconazole as alternative strong CYP3A4/5 inhibitors in clinical DDI studies, but many investigators have also used ritonavir as an alternative. Although the effects of these clinical CYP3A4/5 inhibitors on other CYPs are largely established, reports on the effects on the broad range of drug transporter activities are sparse. In this study, the inhibitory effects of ketoconazole, clarithromycin, ritonavir, and itraconazole (and its CYP3A4-inhibitory metabolites, hydroxy-, keto-, and N-desalkyl itraconazole) toward 13 drug transporters (OATP1B1, OATP1B3, OAT1, OAT3, OCT1, OCT2, MATE1, MATE2-K, P-gp, BCRP, MRP2, MRP3, and BSEP) were systematically assessed in transporterexpressing HEK-293 cell lines or membrane vesicles. In vitro findings were translated into clinical context with the basic static model approaches outlined by the FDA in its 2012 draft guidance on DDIs. The results indicate that, like ketoconazole, the alternative clinical CYP3A4/5 inhibitors ritonavir, clarithromycin, and itraconazole each have unique transporter inhibition profiles. None of the alternatives to ketoconazole provided a clean inhibition profile toward the 13 drug transporters evaluated. The results provide guidance for the selection of clinical CYP3A4/5 inhibitors when transporters are potentially involved in a victim drug's pharmacokinetics.
1. Penciclovir, ganciclovir, creatinine, para-aminohippuric acid (PAH), ketoprofen, estrone 3-O-sulfate (E3S), dehydroepiandrosterone 3-O-sulfate (DHEAS) and cyclic guanosine monophosphate (cGMP) were screened as substrates of human liver organic anion transporters OAT2 and OAT7. 2. For OAT7, high uptake ratios (versus mock transfected HEK293 cells) of 29.6 and 15.3 were obtained with E3S and DHEAS. Less robust uptake ratios (≤3.6) were evident with the other substrates. OAT2 (transcript variant 1, OAT2-tv1) presented high uptake ratios of 30, 13, ∼35, ∼25, 8.5 and 9 with cGMP, PAH, penciclovir, ganciclovir, creatinine and E3S, respectively. No uptake was observed with DHEAS. 3. Although not a substrate of either transporter, ketoprofen did inhibit transfected OAT2-tv1 (IC of 17, 22, 23, 24, 35 and 586 μM; creatinine, ganciclovir, penciclovir, cGMP, E3S and prostaglandin F2α, respectively) and penciclovir uptake (IC = 27 µM; >90% inhibition) by plated human hepatocytes (PHH). 4. It is concluded that penciclovir and ketoprofen may serve as useful tools for the assessment of OAT2 activity in PHH. However, measurement of OAT7 activity therein will prove more challenging, as high uptake rates are evident with E3S and DHEAS only and both sulfoconjugates are known to be substrates of organic anion transporting polypeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.