A rhodium-catalyzed intramolecular silylation of alkyl C-H bonds has been developed that occurs with unusual selectivity for the C-H bonds located δ to the oxygen atom of an alcohol-derived silyl ether over typically more reactive C-H bonds more proximal to the same oxygen atom. (Hydrido)silyl ethers, generated in situ by dehydrogenative coupling of tertiary alcohols with diethylsilane, undergo regioselective silylation at a primary C-H bond δ to the hydroxyl group in the presence of [(Xantphos)Rh(Cl)] as catalyst. Oxidation of the resulting 6-membered oxasilolanes generates 1,4-diols. This silylation and oxidation sequence provides an efficient method to synthesize 1,4-diols by a hydroxyl-directed, aliphatic C-H bond functionalization reaction and is distinct from the synthesis of 1,3-diols from alcohols catalyzed by iridium. Mechanistic studies show that the rhodium-catalyzed silylation of alkyl C-H bonds occurs with a resting state and relative rates for elementary steps that are significantly different from those for the rhodium-catalyzed silylation of aryl C-H bonds. The resting state of the catalyst is a (Xantphos)Rh(I)(SiR)(norbornene) complex, and an analogue was synthesized and characterized crystallographically. The rate-limiting step of the process is oxidative addition of the δ C-H bond to Rh. Computational studies elucidated the origin of high selectivity for silylation of the δ C-H bond when Xantphos-ligated rhodium is the catalyst. A high barrier for reductive elimination from the six-membered metalacyclic, secondary alkyl intermediate formed by cleavage of the γ C-H bond and low barrier for reductive elimination from the seven-membered metalacyclic, primary alkyl intermediate formed by cleavage of the δ C-H accounts for the selective functionalization of the δ C-H bond.
We report a new system for the silylation of aryl C–H bonds. The combination of [Ir(cod)(OMe)]2 and 2,9-Me2-phenanthroline (2,9-Me2-phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H2 byproduct is shown to limit the silylation of aryl C–H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me2-phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C–H bond is reversible and that the higher rates observed with the 2,9-Me2-phen ligand are due to a more thermodynamically favorable oxidative addition of aryl C–H bonds.
The steric effects of substituents on five‐membered rings are less pronounced than those on six‐membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five‐membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C−H bonds, have been poor in many cases. We report that the silylation of five‐membered‐ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5‐cyclooctadiene) and a phenanthroline ligand or a new pyridyl‐imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C−H bonds of these rings under conditions that the borylation of C−H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross‐coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.
Phenanthroline ligands and [Ir(cod)(OMe)] 2 form complexes that catalyze the silylation of aromatic and aliphatic C-H bonds. However, no experimental data on the identity of complexes related to the mechanism of this process or the mechanisms by which they react to functionalize C-H bonds have been reported. Herein, we describe our studies on the mechanism of the iridiumcatalyzed silylation of aryl C-H bonds. The resting state of the catalyst is an iridium disilyl hydride complex (phenanthroline)Ir(SiMe(OTMS) 2 ) 2 (H)(L), in which L varies with the arene and additives. An iridium disilyl hydride complex was isolated, characterized, and allowed to react with arenes to form aryl silanes. The kinetics of the reactions of electron-rich and electron-poor arenes showed that the rate-limiting step varies with the electronic properties of the arene. Computational studies on related iridium silyl complexes revealed that the high activity of iridium complexes containing sterically encumbered phenanthroline ligands is due to a change in the number of silyl groups bound to iridium between the resting state of the catalyst containing the hindered phenanthroline and that containing less-hindered phenanthroline.
The steric effects of substituents on five‐membered rings are less pronounced than those on six‐membered rings because of the difference in bond angles. Thus, the regioselectivities of reactions of five‐membered heteroarenes that occur with selectivities dictated by steric effects, such as the borylation of C−H bonds, have been poor in many cases. We report that the silylation of five‐membered‐ring heteroarenes occurs with high sterically derived regioselectivity when catalyzed by the combination of [Ir(cod)(OMe)]2 (cod=1,5‐cyclooctadiene) and a phenanthroline ligand or a new pyridyl‐imidazoline ligand that further increases the regioselectivity. The silylation reactions with these catalysts produce high yields of heteroarylsilanes from functionalization at the most sterically accessible C−H bonds of these rings under conditions that the borylation of C−H bonds with previously reported catalysts formed mixtures of products or products that are unstable. The heteroarylsilane products undergo cross‐coupling reactions and substitution reactions with ipso selectivity to generate heteroarenes that bear halogen, aryl, and perfluoroalkyl substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.