The ICRP recently updated its biokinetic models for workers in a series of reports called the OIR (Occupational Intakes of Radionuclides) series. A new biokinetic model for astatine, the heaviest member of the halogen family, was adopted in OIR Part 5 (ICRP Publication 151, in press). This paper provides an overview of available biokinetic data for astatine; describes the basis for the ICRP’s updated model for astatine; and tabulates dose coefficients for intravenous injection of each of the two longest lived and most important astatine isotopes, 211At and 210At. Astatine-211 (T1/2 = 7.214 h) is a promising radionuclide for use in targeted α-particle therapy due to several favorable properties including its half-life and the absence of progeny that could deliver significant radiation doses outside the region of α-particle therapy. Astatine-210 (T1/2 = 8.1 h) is an impurity generated in the production of 211At in a cyclotron and represents a potential radiation hazard via its long-lived progeny 210Po (T1/2 = 138 d). Tissue dose coefficients for injected 210At and 211At based on the updated model are shown to differ considerably from values based on the ICRP’s previous model for astatine, particularly for the thyroid, stomach wall, salivary glands, lungs, spleen, and kidneys.
The US National Council on Radiation Protection and Measurements (NCRP) convened Scientific Committee 6-12 (SC 6-12) to examine methods for improving dose estimates for brain tissue for internally deposited radionuclides, with emphasis on alpha emitters. This Memorandum summarizes the main findings of SC 6 12 described in the recently published NCRP Commentary No. 31, “Development of Kinetic and Anatomical Models for Brain Dosimetry for Internally Deposited Radionuclides”. The Commentary examines the extent to which dose estimates for the brain could be improved through increased realism in the biokinetic and dosimetric models currently used in radiation protection and epidemiology. A limitation of most of the current element-specific systemic biokinetic models is the absence of brain as an explicitly identified source region with its unique rate(s) of exchange of the element with blood. The brain is usually included in a large source region called Other that contains all tissues not considered major repositories for the element. In effect, all tissues in Other are assigned a common set of exchange rates with blood. A limitation of current dosimetric models for internal emitters is that activity in the brain is treated as a well-mixed pool, although more sophisticated models allowing consideration of different activity concentrations in different regions of the brain have been proposed. Case studies for 18 internal emitters indicate that brain dose estimates using current dosimetric models may change substantially (by a factor of 5 or more), or may change only modestly, by addition of a sub-model of the brain in the biokinetic model, with transfer rates based on results of published biokinetic studies and autopsy data for the element of interest. As a starting place for improving brain dose estimates, development of biokinetic models with explicit sub-models of the brain (when sufficient biokinetic data are available) is underway for radionuclides frequently encountered in radiation epidemiology. A longer-term goal is development of coordinated biokinetic and dosimetric models that address the distribution of major radioelements among radiosensitive brain tissues.
This paper describes an updated biokinetic model for systemic sodium (Na), developed for use in a series of reports by the International Commission on Radiological Protection (ICRP) on occupational intake of radionuclides. In contrast to the ICRP’s previous model for intake of radio-sodium by workers, the updated model depicts realistic directions of movement of Na in the body including recycling of activity between blood and tissues. The updated model structure facilitates extension of the baseline transfer coefficients for adults to different age groups and to special exposure scenarios such as transfer of radio-sodium from the mother to the foetus or the nursing infant. Dose coefficients for 22Na and 24Na based on the updated model generally do not differ greatly from those based on the ICRP’s previous Na model when both models are connected to the ICRP’s latest dosimetry system. The main exception is that the updated model yields roughly twofold higher dose coefficients for endosteal bone surface than does the previous model due to the dosimetrically cautious assumption in the updated model that exchangeable Na in bone resides on bone surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.