We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140-day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C 120, Mrk 6, and PG 2130+099, from which we have measured the time lag between variations in the 5100Å continuum and the Hβ broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of M BH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.
We present velocity-resolved reverberation results for five active galactic nuclei. We recovered velocity-delay maps using the maximum entropy method for four objects: Mrk 335, Mrk 1501, 3C 120, and PG 2130+099. For the fifth, Mrk 6, we were only able to measure mean time delays in different velocity bins of the Hβ emission line. The four velocity-delay maps show unique dynamical signatures for each object. For 3C 120, the Balmer lines show kinematic signatures consistent with both an inclined disk and infalling gas, but the He ii λ4686 emission line is suggestive only of inflow. The Balmer lines in Mrk 335, Mrk 1501, and PG 2130+099 show signs of infalling gas, but the He ii emission in Mrk 335 is consistent with an inclined disk. We also see tentative evidence of combined virial motion and infalling gas from the velocity-binned analysis of Mrk 6. The maps for 3C 120 and Mrk 335 are two of the most clearly defined velocity-delay maps to date. These maps constitute a large increase in the number of objects for which we have resolved velocity-delay maps and provide evidence supporting the reliability of reverberation-based black hole mass measurements.
Because of the development of large-format, wide-field cameras, microlensing surveys are now able to monitor millions of stars with sufficient cadence to detect planets. These new discoveries will span the full range of significance levels including planetary signals too small to be distinguished from the noise. At present, we do not understand where the threshold is for detecting planets. MOA-2011-BLG-293Lb is the first planet to be published from the new surveys, and it also has substantial followup observations. This planet is robustly detected in survey+followup data (∆χ 2 ∼ 5400). The planet/host mass ratio is q = 5.3 ± 0.2 × 10 −3 . The best fit projected separation is s = 0.548 ± 0.005 Einstein radii. However, due to the s ↔ s −1 degeneracy, projected separations of s −1 are only marginally disfavored at ∆χ 2 = 3. A Bayesian estimate of the host mass gives M L = 0.43 +0.27 −0.17 M ⊙ , with a sharp upper limit of M L < 1.2 M ⊙ from upper limits on the lens flux. Hence, the planet mass is m p = 2.4 +1.5 −0.9 M Jup , and the physical projected separation is either r ⊥ ≃ 1.0 AU or r ⊥ ≃ 3.4 AU. We show that survey data alone predict this solution and are able to characterize the planet, but the ∆χ 2 is much smaller (∆χ 2 ∼ 500) than with the followup data. The ∆χ 2 for the survey data alone is smaller than for any other securely detected planet. This event suggests a means to probe the detection threshold, by analyzing a large sample of events like MOA-2011-BLG-293, which have both followup data and high cadence survey data, to provide a guide for the interpretation of pure survey microlensing data.
Space-based microlens parallax measurements are a powerful tool for understanding planet populations, especially their distribution throughout the Galaxy. However, if space-based observations of the microlensing events must be specifically targeted, it is crucial that microlensing events enter the parallax sample without reference to the known presence or absence of planets. Hence, it is vital to define objective criteria for selecting events where possible and to carefully consider and minimize the selection biases where not possible so that the final sample represents a controlled experiment.We present objective criteria for initiating observations and determining their cadence for a subset of events, and we define procedures for isolating subjective decision making from information about detected planets for the remainder of
We combine Spitzer and ground-based KMTNet microlensing observations to identify and precisely measure an Earth-mass (1.43 −0.46 kpc, it is the third consecutive case among the Spitzer "Galactic distribution" planets toward the Galactic bulge that lies in the Galactic disk as opposed to the bulge itself, hinting at a skewed distribution of planets. Together with previous microlensing discoveries, the seven Earth-size planets orbiting the ultracool dwarf TRAPPIST-1, and the detection of disks around young brown dwarfs, OGLE-2016-BLG-1195Lb suggests that such planets might be common around ultracool dwarfs. It therefore sheds light on the formation of both ultracool dwarfs and planetary systems at the limit of low-mass protoplanetary disks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.