We investigate field theories on the worldvolume of a D3-brane transverse to partial resolutions of a Z 3 × Z 3 Calabi-Yau threefold quotient singularity. We deduce the field content and lagrangian of such theories and present a systematic method for mapping the moment map levels characterizing the partial resolutions of the singularity to the Fayet-Iliopoulos parameters of the D-brane worldvolume theory. As opposed to the simpler cases studied before, we find a complex web of partial resolutions and associated field-theoretic Fayet-Iliopoulos deformations. The analysis is performed by toric methods, leading to a structure which can be efficiently described in the language of convex geometry. For the worldvolume theory, the analysis of the moduli space has an elegant description in terms of quivers. As a by-product, we present a systematic way of extracting the birational geometry of the classical moduli spaces, thus generalizing previous work on resolution of singularities by D-branes. a ceb5@cgtp.duke.edu
I discuss the axiomatic framework of (tree-level) associative open string field theory in the presence of D-branes by considering the natural extension of the case of a single boundary sector. This leads to a formulation which is intimately connected with the mathematical theory of differential graded categories. I point out that a generic string field theory as formulated within this framework is not closed under formation of D-brane composites and as such does not allow for a unitary description of D-brane dynamics. This implies that the collection of boundary sectors of a generic string field theory with D-branes must be extended by inclusion of all possible D-brane composites. I give a precise formulation of a weak unitarity constraint and show that a minimal extension which is unitary in this sense can always be obtained by promoting the original D-brane category to an enlarged category constructed by using certain generalized complexes of D-branes. I give a detailed construction of this extension and prove its closure under formation of D-brane composites. These results amount to a completely general description of D-brane composite formation within the framework of associative string field theory.
We give a systematic derivation of the consistency conditions which constrain open-closed disk amplitudes of topological strings. They include the A ∞ relations (which generalize associativity of the boundary product of topological field theory), as well as certain homotopy versions of bulk-boundary crossing symmetry and Cardy constraint. We discuss integrability of amplitudes with respect to bulk and boundary deformations, and write down the analogs of WDVV equations for the space-time superpotential. We also study the structure of these equations from a string field theory point of view. As an application, we determine the effective superpotential for certain families of D-branes in B-twisted topological minimal models, as a function of both closed and open string moduli. This provides an exact description of tachyon condensation in such models, which allows one to determine the truncation of the open string spectrum in a simple manner.
Abstract:We reconsider the issue of localization in open-closed B-twisted Landau-Ginzburg models with arbitrary Calabi-Yau target. Through careful analsysis of zero-mode reduction, we show that the closed model allows for a one-parameter family of localization pictures, which generalize the standard residue representation. The parameter λ which indexes these pictures measures the area of worldsheets with S 2 topology, with the residue representation obtained in the limit of small area. In the boundary sector, we find a double family of such pictures, depending on parameters λ and µ which measure the area and boundary length of worldsheets with disk topology. We show that setting µ = 0 and varying λ interpolates between the localization picture of the B-model with a noncompact target space and a certain residue representation proposed recently. This gives a complete derivation of the boundary residue formula, starting from the explicit construction of the boundary coupling. We also show that the various localization pictures are related by a semigroup of homotopy equivalences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.