Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off‐target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy‐induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology‐based approaches have emerged as promising strategies for preventing and treating chemotherapy‐induced neurotoxicity, neuropathy, and cardiomyopathy. NP‐based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy‐induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.