Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task. We also reviewed the applications of XR in other vocational domains and how they can be leveraged in the manufacturing industry. We finally present some current barriers to XR adoption in manufacturing training and highlight the current limitations that should be considered when looking to develop and apply practical applications of XR.
Storytelling has been established as a proven method to effectively communicate and assist in knowledge transfer. In recent years, there has been growing interest in improving the training and learning domain by using advanced technology such as Virtual Reality (VR). However, a gap exists between storytelling and VR, and it is as yet unclear how they can be combined to form an effective system that not only maintains the level of engagement and immersion provided by VR technology but also provides the core strengths of storytelling. In this paper, we present vIS, a Vocational Immersive Storytelling system, which bridges the gap between storytelling and VR. vIS focuses on vocational training, in which users are trained on how to use a mechanical micrometer by employing a creative fictional story embedded inside a virtual manufacturing plant’s workplace. For the evaluation, a two-phase user study with 30 participants was conducted to measure the system’s effectiveness and improvements in long-term training, as well as to examine user experience against traditional methods of training—2D videos and textual manuals. The results indicate that the user’s ability to retain their training after seven days was nearly equal for vIS and the 2D video-based technique and was considerably higher than the text-based technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.