Objectives: Cochlear implant (CI) signal processing degrades the spectral components of speech. This requires CI users to rely primarily on temporal cues, specifically, amplitude modulations within the temporal envelope, to recognize speech. Auditory temporal processing ability for envelope modulations worsens with advancing age, which may put older CI users at a disadvantage compared with younger users. To evaluate how potential age-related limitations for processing temporal envelope modulations impact spectrally degraded sentence recognition, noise-vocoded sentences were presented to younger and older normal-hearing listeners in quiet. Envelope modulation rates were varied from 10 to 500 Hz by adjusting the low-pass filter cutoff frequency (LPF). The goal of this study was to evaluate if age impacts recognition of noise-vocoded speech and if this age-related limitation existed for a specific range of envelope modulation rates. Design: Noise-vocoded sentence recognition in quiet was measured as a function of number of spectral channels (4, 6, 8, and 12 channels) and LPF (10, 20, 50, 75, 150, 375, and 500 Hz) in 15 younger normal-hearing listeners and 15 older near-normal-hearing listeners. Hearing thresholds and working memory were assessed to determine the extent to which these factors were related to recognition of noise-vocoded sentences. Results: Younger listeners achieved significantly higher sentence recognition scores than older listeners overall. Performance improved in both groups as the number of spectral channels and LPF increased. As the number of spectral channels increased, the differences in sentence recognition scores between groups decreased. A spectral-temporal trade-off was observed in both groups in which performance in the 8- and 12-channel conditions plateaued with lower-frequency amplitude modulations compared with the 4- and 6-channel conditions. There was no interaction between age group and LPF, suggesting that both groups obtained similar improvements in performance with increasing LPF. The lack of an interaction between age and LPF may be due to the nature of the task of recognizing sentences in quiet. Audiometric thresholds were the only significant predictor of vocoded sentence recognition. Although performance on the working memory task declined with advancing age, working memory scores did not predict sentence recognition. Conclusions: Younger listeners outperformed older listeners for recognizing noise-vocoded sentences in quiet. The negative impact of age was reduced when ample spectral information was available. Age-related limitations for recognizing vocoded sentences were not affected by the temporal envelope modulation rate of the signal, but instead, appear to be related to a generalized task limitation or to reduced audibility of the signal.
The objective of this study was to obtain a normative database of speech intelligibility data for young normal-hearing listeners communicating in public spaces. A total of 174 listeners participated in an interactive speech intelligibility task that required four-person groups to conduct a live version of the Modified Rhyme Test in noisy public spaces. The public spaces tested included a college library, a college cafeteria, a casual dining restaurant during lunch hour, and a crowded bar during happy hour. At the start of each trial, one of the participants was randomly selected as the talker, and a tablet computer was used to prompt them to say a word aloud from the Modified Rhyme Test. Then, the other three participants were required to select this word from one of six rhyming alternatives displayed on three other tablet computers. The tablet computers were also used to record the SPL at each listener location during and after the interval where the target talker was speaking. These SPL measurements were used to estimate the signal-to-noise ratio (SNR) in each trial of the experiment. As expected, the results show that speech intelligibility decreases, response time increases, and perceived difficulty increases as the background noise level increases. There was also a systematic decrease in SNR with increasing background noise, with SNR decreasing 0.44 dB for every 1 dB increase in ambient noise level above 60 dB. Overall, the results of this study have demonstrated how low-cost tablet computer-based data collection systems can be used to collect live-talker speech intelligibility data in real-world environments. We believe these techniques could be adapted for use in future studies focused on obtaining ecologically valid assessments of the effects of age, hearing impairment, amplification, and other factors on speech intelligibility performance in real-world environments.
This study examined the speech-related advantages of binaural listening for individuals conversing in a noisy restaurant. Young, normal-hearing adults were tested in groups of four during monaural and binaural listening conditions. Monosyllabic word stimuli were presented in a closed-set format. Speech intelligibility, response time (RT), and self-reported difficulty were measured. Results showed a speech intelligibility advantage of 17%, a 0.26 s decrease in RT, and a reduction in reported difficulty in binaural compared to monaural listening. These data suggest the binaural advantage obtained in real-world settings compares favorably with that observed in the laboratory, indicating that speech testing in laboratories approximates real-world performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.