An experiment was conducted in which the metabolic utilization of energy was measured in individually penned pigs from seven groups that differed in genotype and(or) sex and ranged in body weight between 20 and 107 kg. The animals were fed a diet containing, on a DM basis, 14.7 MJ ME and at least 21% CP. Heat production was measured in an open-circuit calorimeter, and energy, nitrogen, and fat balances were determined at regular intervals over the growing period; a total of 177 measurements were performed. Body composition of the animals was measured by serial slaughter, and these data were used for estimating the body composition of an animal at a given weight through allometric regression. A factorial analysis procedure was used to estimate the utilization of ME by regressing the ME intake on the observed protein and lipid deposition rates. The intercept of this equation is the maintenance energy requirement (MEm) and was represented either as a function of body weight with group-specific parameters (MEm = a(i) BWb) or as a function of the muscle and visceral mass with an additional additive group effect (MEm = aM muscle(b) + a(v) viscera(b) + G(i)). With BW as dependent variable, the exponent b was close to .60 and differed significantly from .75. The regression coefficient (a(i)) averaged 1.02 MJ ME/kg.60 but it was different for most groups, indicating that different groups of animals have different maintenance requirements. Fixing the exponent to .75 consistently underestimated the maintenance requirement. When the exponent b was not fixed to .75 but estimated, the partial efficiencies for protein and lipid deposition were .62 and .84, respectively. Body muscle and visceral mass could explain a large part of the variation in MEm. Viscera contributed three times more to MEm (per kilogram of mass raised to the .70 power) than did muscle. Even though the muscle mass exceeds to a large extent the visceral mass in animals, the contribution of muscle to MEm was lower than that of viscera for most groups.
This study assessed daily milk yield (DMY), 100-day (MY100), and 305-day (MY305) milk yield, and lactation length (LL) in purebred Ankole cattle and Ankole crossbreds, and the influence of environmental factors on these traits. Milk yield data were obtained for 865 cows and 1234 lactations and analyzed using a mixed linear model. The overall least squares mean of DMY, MY100, and MY305 across breed groups was 2.7 L (N = 1234, SD = 1.7), 262 L (N = 959, SD = 176), and 759 L (N = 448, SD = 439), respectively, while the average lactation length was 256 days (N = 960, SD = 122). All factors included (breed group, season and year of calving, and parity) were significant for yield traits, except season of calving for MY305. First-parity cows had the lowest milk production, and fourth-parity cows the highest. For all traits, pure Ankole cows had the lowest milk yield. Among the crossbreds, there was no significant difference between Ankole × Friesian, Ankole-Jersey mother × Sahiwal sire, and Ankole-Sahiwal mother × Jersey sire, or between Ankole × Sahiwal and Ankole-Sahiwal mother × Sahiwal sire. It was concluded that Ankole crosses with Friesian or Jersey can be beneficial, even under a management system of limited nutrition as in Rwanda.
The objective of the study was to compare body weights and growth from birth to 18 months of age of various groups of crossbred cattle born from 1999 to 2007, being crossbreds of Ankole (A) with Brown Swiss (B), Holstein Friesian (F), Jersey (J), and Sahiwal (S). Average weights were 26.5 kg at birth, 161 kg at weaning, and 226 kg at 18 months. Both season and sex significantly affected birth weight (BW), weight at 8 and 18 months (W8 and W18), and average daily gain from weaning to 18 months (ADG18) and, unlike season, sex significantly affected average daily gain to 8 months and weaning age. The general trend was that average daily gain attained a maximum before weaning and thereafter decreased until 18 months. Least square means for AB and AF calves were comparable and significantly differed only for W18 and ADG18. AJ had the lowest BW but was comparable with AS, AJxS, and ASxJ for W8, age-adjusted weaning weight, and W18. Generally, AF was heavier than other breed groups, but the difference was smaller than expected probably because environmental conditions did not allow full expression of genetic potential for growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.