The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields.
Recently much effort has been invested in using convolutional neural network (CNN) models trained on 3D structural images of protein-ligand complexes to distinguish binding from non-binding ligands for virtual screening. However, the dearth of reliable protein-ligand x-ray structures and binding affinity data has required the use of constructed datasets for the training and evaluation of CNN molecular recognition models. Here, we outline various sources of bias in one such widely-used dataset, the Directory of Useful Decoys: Enhanced (DUD-E). We have constructed and performed tests to investigate whether CNN models developed using DUD-E are properly learning the underlying physics of molecular recognition, as intended, or are instead learning biases inherent in the dataset itself. We find that superior enrichment efficiency in CNN models can be attributed to the analogue and decoy bias hidden in the DUD-E dataset rather than successful generalization of the pattern of protein-ligand interactions. Comparing additional deep learning models trained on PDBbind datasets, we found that their enrichment performances using DUD-E are not superior to the performance of the docking program AutoDock Vina. Together, these results suggest that biases that could be present in constructed datasets should be thoroughly evaluated before applying them to machine learning based methodology development.
Passive membrane permeation of small molecules is essential to achieve the required absorption, distribution, metabolism, and excretion (ADME) profiles of drug candidates, in particular intestinal absorption and transport across the blood-brain barrier. Computational investigations of this process typically involve either building QSAR models or performing free energy calculations of the permeation event. Although insightful, these methods rarely bridge the gap between computation and experiment in a quantitative manner, and identifying structural insights to apply toward the design of compounds with improved permeability can be difficult. In this work, we combine molecular dynamics simulations capturing the kinetic steps of permeation at the atomistic level with a dynamic mechanistic model describing permeation at the in vitro level, finding a high level of agreement with experimental permeation measurements. Calculation of the kinetic rate constants determining each step in the permeation event allows derivation of structure-kinetic relationships of permeation. We use these relationships to probe the structural determinants of membrane permeation, finding that the desolvation/loss of hydrogen bonding required to leave the membrane partitioned position controls the membrane flip-flop rate, whereas membrane partitioning determines the rate of leaving the membrane.
In order to fully understand the dynamics of processes within biological lipid membranes, it is necessary to possess an intimate knowledge of the physical state and ordering of lipids within the membrane. Here we report the use of three molecular rotors based on meso-substituted boron-dipyrrin (BODIPY) in combination with fluorescence lifetime spectroscopy to investigate the viscosity and phase behaviour of model lipid bilayers. In phase-separated giant unilamellar vesicles, we visualise both liquid-ordered (Lo) and liquid-disordered (Ld) phases using fluorescence lifetime imaging microscopy (FLIM), determining their associated viscosity values, and investigate the effect of composition on the viscosity of these phases. Additionally, we use molecular dynamics simulations to investigate the orientation of the BODIPY probes within the bilayer, as well as using molecular dynamics simulations and fluorescence correlation spectroscopy (FCS) to compare diffusion coefficients with those predicted from the fluorescence lifetimes of the probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.