The application of convolutional neural networks (CNNs) to challenging visual recognition tasks has been shown to be highly effective and robust compared to traditional machine vision techniques. The recent development of small, powerful GPUs has enabled embedded systems to incorporate real-time, CNN-based, visual inference. Agriculture is a domain where this technology could be hugely advantageous. One such application within agriculture is precision spraying where only weeds are targeted with herbicide. This approach promises weed control with significant economic and environmental benefits from reduced herbicide usage. While existing research has validated that CNN-based vision methods can accurately discern between weeds and crops, this paper explores how such detections can be used to actuate a prototype precision sprayer that incorporates a CNNbased weed detection system and validates spraying performance in a simplified scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.