Herein, we report on the rhodium‐catalyzed reaction of triazoles with acyl selenides. Under thermal reaction conditions and in the presence of a rhodium catalyst, a rapid 1,3‐difunctionalization reaction occurs to provide valuable α‐seleno enamides with high stereoselectivity and broad functional group tolerance, which was demonstrated in 35 examples with up to 95% yield. Computational calculations suggest a reaction pathway that gives a direct access to the 1,3‐difunctionalization without intermittent formation of ylide intermediates.
Malaria is one of the deadliest tropical diseases, especially causing havoc in children under the age of five in Africa. Although the disease is treatable, the rapid development of drug resistant parasites against frontline drugs requires the search for novel antimalarials. In this study, we tested a series of organosulfur compounds from our internal library for their antiplasmodial effect against Plasmodium falciparum asexual and sexual blood stages. Some active compounds were also obtained in enantiomerically pure form and tested individually against asexual blood stages of the parasite to compare their activity. Out of the 23 tested compounds, 7 compounds (1, 2, 5, 9, 15, 16, and 17) exhibited high antimalarial activity, with IC50 values in the range from 2.2 ± 0.64 to 5.2 ± 1.95 µM, while the the other compounds showed moderate to very low activity. The most active compounds also exhibited high activity against the chloroquine-resistant strain, reduced gametocyte development and were not toxic to non-infected red blood cells and Hela cells, as well as the hematopoietic HEL cell line at concentrations below 50 µM. To determine if the enantiomers of the active compounds display different antimalarial activity, enantiomers of two of the active compounds were separated and their antimalarial activity compared. The results show a higher activity of the (–) enantiomers as compared to their (+) counterparts. Our combined data indicate that organosulfur compounds could be exploited as antimalarial drugs and enantiomers of the active compounds may represent a good starting point for the design of novel drugs to target malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.