Embryonic mesenchymal cells are dispersed within an extracellular matrix but can coalesce to form condensates with key developmental roles. Cells within condensates undergo fate and morphological changes, and induce cell fate changes in nearby epithelia to produce structures including hair follicles, feathers or intestinal villi. Here, by imaging of mouse and chicken embryonic skin, we find that mesenchymal cells undergo much of their dispersal in early interphase, in a stereotyped process of displacement driven by three hours of rapid and persistent migration, followed by a long period of low motility. The cell division plane and the elevated migration speed and persistence of newly born mesenchymal cells are mechanosensitive, aligning with tension in the tissue. This early G1 migratory behaviour disperses mesenchymal cells and allows the daughters of recent divisions to travel long distances to enter dermal condensates, demonstrating an unanticipated effect of a cell cycle sub-phase on core mesenchymal behaviour.
Human prostatic tissue exhibits complex mechanical behaviour due to its multiphasic, heterogeneous nature, with hierarchical microstructures involving epithelial compartments, acinar lumens and stromal tissue all interconnected in complex networks. This study aims to establish a computational homogenization framework for quantifying the mechanical behaviour of prostate tissue, considering its multiphasic heterogeneous microstructures and the mechanical characteristics of tissue constituents. Representative tissue microstructure models were reconstructed from high‐resolution histology images. Parametric studies on the mechanical properties of the tissue constituents, particularly the fibre‐reinforced hyper‐elasticity of the stromal tissue, were carried out to investigate their effects on the apparent tissue properties. These were then benchmarked against the experimental data reported in literature. Results showed significant anisotropy, both structural and mechanical, and tension‐compression asymmetry of the apparent behaviours of the prostatic tissue. Strong correlation with the key microstructural indices such as area fractions of tissue constituents and the tissue fabric tensor was also observed. The correlation between the stromal tissue orientation and the principal directions of the apparent properties suggested an essential role of stromal tissue in determining the directions of anisotropy and the compression‐tension asymmetry characteristics in normal human prostatic tissue. This work presented a homogenization and histology‐based computational approach to characterize the apparent mechanical behaviours of human prostatic or other similar glandular tissues, with the ultimate aim of assessing how pathological conditions (e.g., prostate cancer and benign prostatic hyperplasia) could affect the tissue mechanical properties in a future study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.