The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8؉ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8 ؉ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8 ؉ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4 ؉ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8؉ and CD4 ؉ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8؉ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8 ؉ T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8 ؉ T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4 ؉ T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. E pstein-Barr virus (EBV) is a gammaherpesvirus found in more than 90% of the human population. Primary infection with EBV is usually followed by establishment of a lifelong latent infection, with occasional reactivation (1). The balance between host immune responses, including CD4 ϩ and CD8 ϩ T cells, and viral immune evasion of these responses is key to the spread and survival of EBV in human populations. Passive evasion through the ability to establish antigenically silent latent infections is an important characteristic of all herpesviruses, ...
Double-strand breaks (DSBs) in DNA are recognized by the Ku70/80 heterodimer and the MRE11-RAD50-NBS1 (MRN) complex and result in activation of the DNA-PK and ATM kinases, which play key roles in regulating the cellular DNA damage response (DDR). DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) are known to interact extensively with the DDR during the course of their replicative cycles. Here we show that during lytic amplification of KSHV DNA, the Ku70/80 heterodimer and the MRN complex consistently colocalize with viral genomes in replication compartments (RCs), whereas other DSB repair proteins form foci outside RCs. Depletion of MRE11 and abrogation of its exonuclease activity negatively impact viral replication, while in contrast, knockdown of Ku80 and inhibition of the DNA-PK enzyme, which are involved in nonhomologous end joining (NHEJ) repair, enhance amplification of viral DNA. Although the recruitment of DSB-sensing proteins to KSHV RCs is a consistent occurrence across multiple cell types, activation of the ATM-CHK2 pathway during viral replication is a cell line-specific event, indicating that recognition of viral DNA by the DDR does not necessarily result in activation of downstream signaling pathways. We have also observed that newly replicated viral DNA is not associated with cellular histones. Since the presence and modification of these DNA-packaging proteins provide a scaffold for docking of multiple DNA repair factors, the absence of histone deposition may allow the virus to evade localization of DSB repair proteins that would otherwise have a detrimental effect on viral replication.IMPORTANCE Tumor viruses are known to interact with machinery responsible for detection and repair of double-strand breaks (DSBs) in DNA, although detail concerning how Kaposi's sarcoma-associated herpesvirus (KSHV) modulates these cellular pathways during its lytic replication phase was previously lacking. By undertaking a comprehensive assessment of the localization of DSB repair proteins during KSHV replication, we have determined that a DNA damage response (DDR) is directed to viral genomes but is distinct from the response to cellular DNA damage. We also demonstrate that although recruitment of the MRE11-RAD50-NBS1 (MRN) DSB-sensing complex to viral genomes and activation of the ATM kinase can promote KSHV replication, proteins involved in nonhomologous end joining (NHEJ) repair restrict amplification of viral DNA. Overall, this study extends our understanding of the virus-host interactions that occur during lytic replication of KSHV and provides a deeper insight into how the DDR is manipulated during viral infection.
A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15–dependent homeostatic expansion and promoted the differentiation of memory precursor–like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells.
The emergence of SARS-CoV-2 variants has exacerbated the COVID-19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N-terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine-tune spike; this may provide a mechanism for SARS-CoV-2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immunedriven antigenic variation and ongoing adaptation to a new host.
The recent emergence of SARS-CoV-2 variants with increased transmission, pathogenesis and immune resistance has jeopardised the global response to the COVID-19 pandemic. Determining the fundamental biology of viral variants and understanding their evolutionary trajectories will guide current mitigation measures, future genetic surveillance and vaccination strategies. Here we examine virus entry by the B.1.1.7 lineage, commonly referred to as the UK/Kent variant. Pseudovirus infection of model cell lines demonstrate that B.1.1.7 entry is enhanced relative to the Wuhan-Hu-1 reference strain, particularly under low expression of receptor ACE2. Moreover, the entry characteristics of B.1.1.7 were distinct from that of its predecessor strain containing the D614G mutation. These data suggest evolutionary tuning of spike protein function. Additionally, we found that amino acid deletions within the N-terminal domain (NTD) of spike were important for efficient entry by B.1.1.7. The NTD is a hotspot of diversity across sarbecoviruses, therefore, we further investigated this region by examining the entry of closely related CoVs. Surprisingly, Pangolin CoV spike entry was 50-100 fold enhanced relative to SARS-CoV-2; suggesting there may be evolutionary pathways by which SARS-CoV-2 may further optimise entry. Swapping the NTD between Pangolin CoV and SARS-CoV-2 demonstrates that changes in this region alone have the capacity to enhance virus entry. Thus, the NTD plays a hitherto unrecognised role in modulating spike activity, warranting further investigation and surveillance of NTD mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.