The mutagenicity of 06-methylguanine (O6MeGua), a chemical carcinogen-DNA adduct, has-been studied in vivo by using a single-stranded M13mp8 genome in which a single OMeGua residue was positioned in the unique recognition site for the restriction' endonuclease Pst I. Transformation of Escherichia coli MM294A cells with this vector gave progeny phage, of which 0.4% were mutated in their Pst I site. In a separate experiment, cellular levels of O'MeGua-DNA methyltransferase (an' O6MeGua-repair protein) were depleted by treatment with N-methyi-N'-nitro-N-nitrosoguanidine (MNNG) prior to viral DNA uptake. In these cells, the mutation frequency due to 06MeGua increased with increasing MNNG dose (the highest mutation frequency observed was 20%). DNA sequence analysis of 60 mutant genomes revealed that 06MeGua induced exclusively G-to-A transitions.
Organic synthesis and recombinant DNA technology were used to situate a putatively premutagenic DNA lesion, O6-methylguanine (O6MeGua), at a specific location in the genomes of two bacterial viruses, M13mp8 and phi X174, and of the bacterial plasmid pBR322. In each genome the first guanine residue in the unique recognition sequence for restriction endonuclease Pst I (5'-C-T-G-C-A-G-3') was replaced with O6MeGua. This was accomplished by ligating a chemically synthesized tetranucleotide, 5'-pTpm6GpCpA-3', into a circular, genome-length heteroduplex in which the four internal nucleotides of the Pst I recognition site had been removed from one strand of the DNA double helix (ligation yield, approximately equal to 50%). It was established that the tetranucleotide was located specifically at the Pst I site and that the presence of O6MeGua rendered the ligation product resistant to cleavage by Pst I. Sensitivity of the genome to Pst I was restored upon treatment with purified Escherichia coli O6MeGua DNA-methyltransferase, a repair protein that removes the methyl group from DNA-bound O6MeGua. This result, in combination with other data, showed unambiguously that O6MeGua was incorporated with high yield into the Pst I recognition sequence.
This work examines the mutagenic activity of O6-methylguanine (O6MeGua), a DNA adduct formed by certain carcinogenic alkylating agents. A tetranucleotide, 5'-HOTpm6GpCpA-3', was synthesized and ligated into a four-base gap in the unique Pst I site of the duplex genome of the E. coli virus, M13mp8. The double-stranded ligation product was converted to single-stranded form and used to transform E. coli to produce progeny phage. The mutation frequency of O6MeGua was defined as the percentage of progeny phage with mutations in their Pst I site, and this value was determined to be 0.4%. To determine the impact of DNA repair on mutagenesis, cellular levels of O6MeGua-DNA methyltransferase (an O6MeGua-repair protein) were depleted by treatment of host cells for virus replication with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) prior to viral DNA uptake. In these host cells, the mutation frequency due to O6MeGua increased markedly with increasing MNNG dose (the highest mutation frequency observed was 20%). DNA sequence analysis of mutant genomes revealed that in both MNNG treated and untreated cells, O6MeGua induced exclusively G to A transitions.ImagesFIGURE 4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.