The strong interaction of electromagnetic fields with plasmonic nanomaterials offers opportunities in various technologies that take advantage of photophysical processes amplified by this light-matter interaction. Recently, it has been shown that in addition to photophysical processes, optically excited plasmonic nanoparticles can also activate chemical transformations directly on their surfaces. This potentially offers a number of opportunities in the field of selective chemical synthesis. In this Review we summarize recent progress in the field of photochemical catalysis on plasmonic metallic nanostructures. We discuss the underlying physical mechanisms responsible for the observed chemical activity, and the issues that must be better understood to see progress in the field of plasmon-mediated photocatalysis.
Plasmonic metal nanoparticles enhance chemical reactions on their surface when illuminated with light of particular frequencies. It has been shown that these processes are driven by excitation of localized surface plasmon resonance (LSPR). The interaction of LSPR with adsorbate orbitals can lead to the injection of energized charge carriers into the adsorbate, which can result in chemical transformations. The mechanism of the charge injection process (and role of LSPR) is not well understood. Here we shed light on the specifics of this mechanism by coupling optical characterization methods, mainly wavelength-dependent Stokes and anti-Stokes SERS, with kinetic analysis of photocatalytic reactions in an Ag nanocube–methylene blue plasmonic system. We propose that localized LSPR-induced electric fields result in a direct charge transfer within the molecule–adsorbate system. These observations provide a foundation for the development of plasmonic catalysts that can selectively activate targeted chemical bonds, since the mechanism allows for tuning plasmonic nanomaterials in such a way that illumination can selectively enhance desired chemical pathways.
Plasmonic metal nanoparticles can efficiently convert the energy of visible photons into the energy of hot charge carriers within the nanoparticles. These energetic charge carriers can transfer to molecules or semiconductors, chemically attached to the nanoparticles, where they can induce photochemical transformations. Classical models of photoinduced charge excitation and transfer in metals suggest that the majority of the energetic charge carriers rapidly decay within the metal nanostructure before they are transferred into the neighboring molecule or semiconductor, and therefore, the efficiency of charge transfer is low. Herein, we present experimental evidence that calls into question this conventional picture. We demonstrate a system where the presence of a molecule, adsorbed on the surface of a plasmonic nanoparticle, significantly changes the flow of charge within the excited plasmonic system. The nanoparticle-adsorbate system experiences high rates of direct, resonant flow of charge from the nanoparticle to the molecule, bypassing the conventional charge excitation and thermalization process taking place in the nanoparticle. This picture of charge transfer suggests that the yield of extracted hot electrons (or holes) from plasmonic nanoparticles can be significantly higher than the yields expected based on conventional models. We discuss a conceptual physical framework that allows us to explain our experimental observations. This analysis points us in a direction toward molecular control of the charge transfer process using interface and local field engineering strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.