With recently available football match event data that record the details of football matches, analysts and researchers have a great opportunity to develop new performance metrics, gain insight, and evaluate key performance. However, most sports sequential events modeling methods and performance metrics approaches could be incomprehensive in dealing with such large-scale spatiotemporal data (in particular, temporal process), thereby necessitating a more comprehensive spatiotemporal model and a holistic performance metric. To this end, we proposed the Transformer-Based Neural Marked Spatio Temporal Point Process (NM-STPP) model for football event data based on the neural temporal point processes (NTPP) framework. In the experiments, our model outperformed the prediction performance of the baseline models. Furthermore, we proposed the holistic possession utilization score (HPUS) metric for a more comprehensive football possession analysis. For verification, we examined the relationship with football teams' final ranking, average goal score, and average xG over a season. It was observed that the average HPUS showed significant correlations regardless of not using goal and details of shot information. Furthermore, we show HPUS examples in analyzing possessions, matches, and between matches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.