Hexagonal boron nitride (h-BN) was recently reported to display single photon emission from ultraviolet to near-infrared range due to the existence of defects. Single photon emission has potential applications in quantum information processing and optoelectronics. These findings trigger increasing research interests in h-BN defects, such as revealing the nature of the defects. Here, we report another intriguing defect property in h-BN, namely photoluminescence (PL) upconversion (anti-Stokes process). The energy gain by the PL upconversion is about 162 meV. The anomalous PL upconversion is attributed to optical phonon absorption in the one-photon excitation process, based on excitation power, excitation wavelength, and temperature-dependence investigations. Possible constitutions of the defects are discussed from the results of scanning transmission electron microscopy (STEM) studies and theoretical calculations. These findings show that defects in h-BN exhibit strong defect-phonon coupling. The results from STEM and theoretical calculations are beneficial for understanding the constitution of the h-BN defects.
Recent findings about ultrahigh thermoelectric performances in SnSe single crystals have stimulated research on this binary semiconductor material. Furthermore, single-layer SnSe is an interesting analogue of phosphorene, with potential applications in two-dimensional (2D) nanoelectronics. Although significant advances in the synthesis of SnSe nanocrystals have been made, fabrication of well-defined large-sized single-layer SnSe flakes in a facile way still remains a challenge. The growth of single-layer rectangular SnSe flakes with a thickness of ~6.8 Å and lateral dimensions of about 30 µm × 50 µm is demonstrated by a two-step synthesis method, where bulk rectangular SnSe flakes were synthesized first by a vapor transport deposition method followed by a nitrogen etching technique to fabricate single-layer rectangular SnSe flakes in an atmospheric pressure system. The as-obtained rectangular SnSe flakes exhibited a pure crystalline phase oriented along the a-axis direction. Field-effect transistor devices fabricated on individual single-layer rectangular SnSe flakes using gold electrodes exhibited p-doped ambipolar behavior and a hole mobility of about 0.16 cm 2 V −1 s −1 . This two-step fabrication method can be helpful for growing other similar 2D large-sized single-layer materials.
Ruddlesden−Popper perovskites have been demonstrated to possess great potential for optical and optoelectronic devices. Because they exhibit better ambient stability than three-dimensional (3D) perovskites, they have been considered as potential substitutes for 3D perovskites as light absorbing layers to improve the photoresponsivity of monolayer transition metal dichalcogenide (TMDC)-based photodetectors. Investigation of the optoelectronic properties of TMDC monolayer/2D perovskite vertical heterostructures is however at an early stage. Here, we address the photovoltaic effect and the photodetection performance in tungsten disulfide (WS 2 ) monolayer/2D perovskite (C 6 H 5 C 2 H 4 NH 3 ) 2 PbI 4 (PEPI) vertical heterostructures. A vertical device geometry with separate graphene contacts to both heterointerface constituents acted as a photovoltaic device and self-driven photodetector. The photovoltaic device exhibited an open circuit voltage of −0.57 V and a short circuit current of 41.6 nA. A photoresponsivity of 0.13 mA/W at the WS 2 /PEPI heterointerface was achieved, which was signified by a factor of 5 compared to that from the individual WS 2 region. The current on/off ratio of the self-driven photodetector was approximately 1500. The photoresponsivity and external quantum efficiency of the self-driven photodetector were estimated to be 24.2 μA/W and 5.7 × 10 −5 , respectively. This work corroborates that 2D perovskites are promising light absorbing layers in optoelectronic devices with a TMDC-based heterointerface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.