In water distribution systems (WDSs), the available flow at a demand node is dependent on the pressure at that node. When a network is lacking in pressure, not all consumer demands will be met in full. In this context, the assumption that all demands are fully satisfied regardless of the pressure in the system becomes unreasonable and represents the main limitation of the conventional demand driven analysis (DDA) approach to WDS modelling. A realistic depiction of the network performance can only be attained by considering demands to be pressure dependent. This paper presents an extension of the renowned DDA based hydraulic simulator EPANET 2 to incorporate pressure-dependent demands. This extension is termed "EPANET-PDX" (pressure-dependent extension) herein. The utilization of a continuous nodal pressure-flow function coupled with a line search and backtracking procedure greatly enhance the algorithm's convergence rate and robustness. Simulations of real life networks consisting of multiple sources, pipes, valves and pumps were successfully executed and results are presented herein. Excellent modelling performance was achieved for analysing both normal and pressure deficient conditions of the WDSs. Detailed computational efficiency results of EPANET-PDX with reference to EPANET 2 are included as well.
This paper describes a penalty-free multi-objective evolutionary optimization approach for the phased whole-life design and rehabilitation of water distribution systems. The optimization model considers the initial construction, rehabilitation and upgrading costs. Repairs and pipe failure costs are included. The model also takes into consideration the deterioration over time of both the structural integrity and hydraulic capacity of every pipe. The fitness of each solution is determined from the trade-off between its lifetime costs and its actual hydraulic properties. The hydraulic analysis approach used, known as pressure-dependent modelling, considers explicitly the pressure dependency of the water supply consumers receive. Results for two sample networks in the literature are included that show the algorithm is stable and finds optimal and near-optimal solutions reliably and efficiently. The results also suggest that the evolutionary sampling efficiency is very high. In other words, the number of solutions evolved and analysed on average before finding a near-optimal solution is small in comparison to the total number of feasible and infeasible solutions. We found better solutions than those reported previously in the literature for the two networks considered. For the Kadu network, for example, the new best solution costs Rs125,460,980-a significant improvement. Additional statistics that are based on extensive testing are included.
This version is available at https://strathprints.strath.ac.uk/43222/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output. AbstractThis paper presents a new penalty-free multi-objective evolutionary approach (PFMOEA) for the optimization of water distribution systems (WDSs). The proposed approach utilizes pressure dependent analysis (PDA) to develop a multi-objective evolutionary search. PDA is able to simulate both normal and pressure deficient networks and provides the means to accurately and rapidly identify the feasible region of the solution space, effectively locating global or near global optimal solutions along its active constraint boundary. The significant advantage of this method over previous methods is that it eliminates the need for ad-hoc penalty functions, additional "boundary search" parameters, or special constraint handling procedures. Conceptually, the approach is downright straightforward and probably the simplest hitherto. The PFMOEA has been applied to several WDS benchmarks and its performance examined. It is demonstrated that the approach is highly robust and efficient in locating optimal solutions. Superior results in terms of the initial network construction cost and number of hydraulic simulations required were obtained. The improvements are demonstrated through comparisons with previously published solutions from the literature.
This paper describes the development and application of a new multiobjective evolutionary optimization approach for the design and upgrading of water distribution systems with multiple pumps and service reservoirs. The optimization model employs a pressure-driven analysis simulator that accounts for the minimum node pressure constraints and conservation of mass and energy. Pump scheduling, tank siting and tank design are integrated seamlessly in the optimization without introducing additional heuristic procedures. The computational solution of the optimization problem is entirely penalty-free, thanks to pressure-driven analysis and the inclusion of explicit criteria for tank depletion and replenishment. The model was applied to the Anytown network that is a benchmark optimization problem. Many new solutions were achieved that are cheaper and offer superior performance compared to previous solutions in the literature. Detailed and extensive simulations of the solutions achieved were carried out. Spatial and temporal variations in water quality were investigated by simulating the chlorine residual and disinfection by-products in addition to water age. The hydraulic requirements were satisfied; efficiency of pumps was consistently high; effective operation of the new and existing tanks was achieved; water quality was improved; and overall computational efficiency was high. The formulation is entirely generic.Keywords Demand-driven analysis . Pressure-driven analysis . Penalty-free constrained multiobjective evolutionary optimization . Water distribution system . Optimal pump scheduling . Service reservoir design and operation Water Resour Manage (2016) 30:3671-3688
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.