Pregnancy-specific glycoproteins (PSGs) are a family of highly similar secreted proteins produced by the placenta. PSG homologs have been identified in primates and rodents. Members of the human and murine PSG family induce secretion of antiinflammatory cytokines in mononuclear phagocytes. For the purpose of cloning the receptor, we screened a RAW 264.7 cell cDNA expression library. The PSG17 receptor was identified as the tetraspanin, CD9. We confirmed binding of PSG17 to CD9 by ELISA, flow cytometry, alkaline phosphatase binding assays, and in situ rosetting. Anti-CD9 monoclonal antibody inhibited binding of PSG17 to CD9-transfected cells and RAW 264.7 cells. Moreover, PSG17 binding to macrophages from CD9-deficient mice was significantly reduced. We then tested whether PSG17 binds to other members of the murine tetraspanin family. PSG17 did not bind to cells transfected with CD53, CD63, CD81, CD82, or CD151, suggesting that PSG17–CD9 binding is a specific interaction. We have identified the first receptor for a murine PSG as well as the first natural ligand for a member of the tetraspanin superfamily.
Pregnancy-specific glycoproteins (PSGs) are a family of secreted proteins produced by the placenta, which are believed to have a critical role in pregnancy success. Treatment of monocytes with three members of the human PSGs induces interleukin (IL)-10, IL-6, and transforming growth factor-beta(1) (TGF-beta(1)) secretion. To determine whether human and murine PSGs have similar functions and use the same receptor, we treated wild-type and CD9-deficient macrophages with murine PSG17N and human PSG1 and -11. Our data show that murine PSG17N induced secretion of IL-10, IL-6, prostaglandin E(2), and TGF-beta(1) and that CD9 expression is required for the observed induction of cytokines. Therefore, the ability of PSG17 to induce anti-inflammatory cytokines parallels that of members of the human PSG family, albeit human and murine PSGs use different receptors, as CD9-deficient and wild-type macrophages responded equally to human PSGs. We then proceeded to examine the signaling mechanisms responsible for the CD9-mediated response to PSG17. Inhibition of cyclooxygenase 2 significantly reduced the PSG17N-mediated increase in IL-10 and IL-6. Further characterization of the response to PSG17 indicated that cyclic adenosine monophosphate-dependent protein kinase A (PKA) is involved in the up-regulation of IL-10 and IL-6, and it is not required for the induction of TGF-beta(1). Conversely, treatment of macrophages with a PKC inhibitor reduced the PSG17-mediated induction of TGF-beta(1), IL-6, and IL-10 significantly. The induction of anti-inflammatory cytokines by various PSGs supports the hypothesis that these glycoproteins have an essential role in the regulation of the maternal immune response in species with hemochorial placentation.
The function currently attributed to tetraspanins is to organize molecular complexes in the plasma membrane by using multiple cis-interactions. Additionally, the tetraspanin CD9 may be a receptor that binds the soluble ligand PSG17, a member of the immunoglobulin superfamily (IgSF)/CEA subfamily. However, previous data are also consistent with the PSG17 receptor being a CD9 cis-associated protein. In the current study, CD9 extracellular loop (EC2) specifically bound to PSG17-coated beads, indicating a direct interaction between the two proteins. However, CD9-EC2 did not bind to PSG17-coated beads if the CD9-EC2 had the mutation SFQ (173-175) to AAA, a previously studied mutation in egg CD9 that abolishes sperm-egg fusion. Also, PSG17 bound to 293 T cells transfected with wild-type CD9 but not the mutant CD9. By immunofluorescence, PSG17 bound to wild-type eggs but not to CD9 null eggs. The presence of ϳ2 M recombinant PSG17 produced a significant and reversible inhibition (60 -80%) of sperm-egg fusion. Thus, we conclude that CD9 is a receptor for PSG17 and when the PSG17 binding site is mutated or occupied, sperm-egg fusion is impaired. These findings suggest that egg CD9 may function in gamete fusion by binding to a sperm IgSF/CEA subfamily member and such proteins have previously been identified on sperm. INTRODUCTIONMammalian fertilization involves a series of complex cellular and biochemical processes, culminating in sperm-egg fusion and subsequent formation of an embryo. Despite its biological importance, fusion between the plasma membranes of the sperm and the oocyte is not well understood. Although there is general agreement on the concept that gamete fusion may involve the interaction of multiple complementary molecules on the sperm and the oocyte, only a few potentially relevant proteins have been identified.A protein found on the mammalian egg surface that is known to be required for gamete fusion is CD9. CD9 belongs to the tetraspanin family of proteins, which are integral membrane proteins with four transmembrane domains and two extracellular domains (one short, one long) (Maecker et al., 1997). In mammals there are Ͼ30 tetraspanin family members, implicated in a variety of cellular and physiological processes, such as cell motility, cell aggregation, signaling, and cell fusion Hemler, 2001). Tetraspanins are believed to act as "molecular facilitators," grouping specific cell-surface proteins and thus increasing the formation and stability of functional protein complexes (Maecker et al., 1997). CD9 associates with a great variety of membrane proteins, such as membrane-anchored growth factors, integrins, members of the immunoglobulin superfamily (IgSF), and other tetraspanins .Conclusive evidence for a role of CD9 in gamete fusion was the finding that CD9 knockout females are infertile due to the inability of their oocytes to fuse with sperm (Kaji et al., 2000;Le Naour et al., 2000;Miyado et al., 2000), but how CD9 acts in fusion remains unknown. It has been suggested that CD9 acts in sperm-egg fusion...
Previous studies demonstrated that genistein protects mice from radiation-induced bone marrow failure. To overcome genistein's extremely low water solubility, a nanoparticle suspension of genistein has been formulated for more rapid dissolution. In the current study, we evaluated the radioprotective effects of a nanoparticle formulation of genistein on survival and hematopoietic recovery in mice exposed to total-body gamma irradiation. A single intramuscular injection of a saline-based genistein nanosuspension (150 mg/kg) administered to CD2F1 mice 24 h before 9.25 Gy (60)Co radiation exposure resulted in a 30-day survival rate of 95% compared to 25% in vehicle-treated animals. In mice irradiated at 7 Gy, the genistein nanosuspension increased mouse bone marrow cellularity from approximately 2.9% (vehicle treated) to 28.3% on day 7 postirradiation. Flow cytometry analysis demonstrated decreased radiation-induced hematopoietic stem and progenitor cell (HSPC, Lineage(-)/cKit(+)) death from 77.0% (vehicle) to 43.9% (genistein nanosuspension) with a significant recovery of clonogenicity 7 days after irradiation. The genistein nanosuspension also attenuated the radiation-induced elevation of proinflammatory factors interleukin 1 beta (IL-1β), IL-6 and cyclooxygenase-2 (COX-2) in mouse bone marrow and spleen, which may contribute to protecting HSPCs.
We recently demonstrated that a novel cell stress response gene REDD1 protects human fetal osteoblast cell line (hFOB) cells from γ-radiation-induced premature senescence. Here we show that levels of endogenous REDD1 are very low in human hematopoietic progenitor CD34+ cells regardless of radiation, but highly expressed in differentiated hematopoietic cells (14 day cultured CD34+ cells) in response to radiation, which might be associated with radiation tolerance of the latter cells. To further understand the mechanisms of radiation-induced damage in different cells, microRNA (miRNA)-arrays were performed using purified miRNAs from CD34+ and hFOB cells before and post-irradiation and real-time reverse transcription (RT)-PCR was used to validate the expression profiles of miRNAs in the radiation-damaged cells. The results indicate that γ-radiation downregulated 16 miRNAs in CD34+ cells and 14 in hFOB cells. Radiation-induced upregulation was observed for 15 miRNAs in CD34+ cells and 18 miRNAs in hFOB cells. The profiles of radiation-induced miRNA expression were completely different in CD34+ vs. hFOB cells. Radiation up-regulated miRNA (miR)-30b, miR-30c and miR-30d in CD34+ cells, whereas it inhibited miR-30c expression in hFOB cells. Since miR-30 has potential target sites located in the 3′untranslated region (UTR) of the REDD1 gene and radiation regulated miR-30c expression in both CD34+ and hFOB cells, we further explored the effects of miR-30c on REDD1 expression using miR-30c inhibitor and precursor (pre-miR-30c). The results show that pre-miR-30c transfection suppressed REDD1 expression in 14 day cultured CD34+ cells and hFOB cells and resulted in hFOB cell death. In contrast, inhibition of miR-30c expression significantly enhanced clonogenicity in CD34+ cells. Our data suggest that CD34+ and hFOB cells have different miRNA expression patterns after irradiation and miR-30c plays a key role in radiation-induced cell damage which might be through regulation of REDD1 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.