We compute ruin probabilities, in both infinite-time and finite-time, for a Gambler's Ruin problem with both catastrophes and windfalls in addition to the customary win/loss probabilities. For constant transition probabilities, the infinite-time ruin probabilities are derived using difference equations. Finite-time ruin probabilities of a system having constant win/loss probabilities and variable catastrophe/windfall probabilities are determined using lattice path combinatorics. Formulae for expected time till ruin and the expected duration of gambling are also developed. The ruin probabilities (in infinite-time) for a system having variable win/loss/catastrophe probabilities but no windfall probability are found. Finally, the infinite-time ruin probabilities of a system with variable win/loss/catastrophe/windfall probabilities are determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.