The human prostate gland is an important target organ of androgenic hormones. Testosterone and dihydrotestosterone interact with the androgen receptor to regulate vital aspects of prostate growth and function including cellular proliferation, differentiation, apoptosis, metabolism, and secretory activity. Our objective in this study was to characterize the temporal program of transcription that reflects the cellular response to androgens and to identify specific androgen-regulated genes (ARGs) or gene networks that participate in these responses. We used cDNA microarrays representing about 20,000 distinct human genes to profile androgen-responsive transcripts in the LNCaP adenocarcinoma cell line and identified 146 genes with transcript alterations more than 3-fold. Of these, 103 encode proteins with described functional roles, and 43 represent transcripts that have yet to be characterized. Temporal gene expression profiles grouped the ARGs into four distinct cohorts. Five uncharacterized ARGs demonstrated exclusive or high expression levels in the prostate relative to other tissues studied. A search of available DNA sequence upstream of 28 ARGs identified 25 with homology to the androgen responseelement consensus-binding motif. These results identify previously uncharacterized and unsuspected genes whose expression levels are directly or indirectly regulated by androgens; further, they provide a comprehensive temporal view of the transcriptional program of human androgen-responsive cells.T he androgenic hormones testosterone and dihydrotestosterone exert their cellular effects by means of interactions with the androgen receptor (AR), a member of the family of intracellular steroid hormone receptors that function as liganddependent transcription factors (1). Ligand-activated AR, complexed with coactivator proteins and general transcription factors, binds to cis-acting androgen response elements (AREs) located in the promoter regions of specific target genes and serves to activate or to repress transcription (1, 2). During human development, circulating androgens and a functional AR mediate a wide range of reversible and irreversible effects that include the morphogenesis and differentiation of major target tissues such as the prostate, seminal vesicles, and epididimus. The prostate gland has been used extensively as a model system to study androgen effects. In part, this is because of the fact that androgens promote the development and progression of prostate diseases that account for significant morbidity in the population including benign prostatic hypertrophy and prostate adenocarcinoma (2). The recognition that normal and neoplastic prostate epithelial cells depend on circulating androgens for their continued survival and growth led to the development of effective endocrine-based therapy for prostate carcinoma (3). To date, manipulating the androgen pathway by means of surgical or chemical castration remains the primary therapeutic modality for advanced prostate cancer.In the human prostate, the AR mediates ...
The identification of genes with selective expression in specific organs or cell types provides an entry point for understanding biological processes that occur uniquely within a particular tissue. Using a subtraction approach designed to identify genes preferentially expressed in specific tissues, we have identified prostase, a human serine protease with prostate-restricted expression. The prostase cDNA encodes a putative 254-aa polypeptide with a conserved serine protease catalytic triad and an amino-terminal pre-propeptide sequence, indicating a potential secretory function. The genomic sequence comprises five exons and four introns and contains multiple copies of a chromosome 19q-specific minisatellite repeat. Northern analysis indicates that prostase mRNA is expressed in hormonally responsive normal and neoplastic prostate epithelial tissues, but not in prostate stromal constituents. Prostase shares 35% amino acid identity with prostate-specific antigen (PSA) and 78% identity with the porcine enamel matrix serine proteinase 1, an enzyme involved in enamel matrix degradation and with a putative role in the disruption of intercellular junctions. Radiation-hybrid-panel mapping localized prostase to chromosome 19q13, a region containing several other serine proteases, including protease M, pancreatic͞renal kallikrein hK1, and the prostate-specific kallikreins hK2 and hK3 (PSA). The sequence homology between prostase and other well-characterized serine proteases suggests several potential functional roles for the prostase protein that include the degradation of extracellular matrix and the activation of PSA and other proteases.
Remarkable structural and functional similarities exist between theDrosophila Toll/Cactus/Dorsal signaling pathway and the mammalian cytokine-mediated interleukin-1 receptor (IL-1R)/I-κB/NF-κB activation cascade. In addition to a role regulating dorsal-ventral polarity in the developing Drosophilaembryo, signaling through Drosophila Toll (dToll) activates the nonclonal, or innate, immune response in the adult fly. Recent evidence indicates that a human homologue of the dToll protein participates in the regulation of both innate and adaptive human immunity through the activation of NF-κB and the expression of the NF-κB–controlled genes IL-1, IL-6, and IL-8, thus affirming the evolutionary conservation of this host defense pathway. We report here the cloning of two novel human genes, TIL3 and TIL4 (Toll/IL-1R–like-3, -4) that exhibit homology to both the leucine-rich repeat extracellular domains and the IL-1R–like intracellular domains of human andDrosophila Toll. Northern analysis showed distinctly different tissue distribution patterns with TIL3 expressed predominantly in ovary, peripheral blood leukocytes, and prostate, and TIL4 expressed primarily in peripheral blood leukocytes and spleen. Chromosomal mapping by fluorescence in situ hybridization localized the TIL3 gene to chromosome 1q41-42 and TIL4 to chromosome 4q31.3-32. Functional studies showed that both TIL3 and TIL4 are able to activate NF-κB, though in a cell type–dependent fashion. Together with human Toll, TIL3 and TIL4 encode a family of genes with conserved structural and functional features involved in immune modulation.
Prostate small cell carcinoma expresses a diverse repertoire of genes that reflect characteristics of their NE cell of origin. ASCL1, INA, and SV2B are potential molecular markers for small cell NE tumors and NE cells of the prostate. This small cell NE carcinoma gene expression profile may yield insights into the development, progression, and treatment of subtypes of prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.