Bayesian networks and their associated methods are especially suited for capturing and dealing with uncertainty. They can be successfully applied both in engineering sciences and in reliability analyses of water distribution systems. In this paper we propose an interactive Bayesian network and a decision-theoretic system which intend to monitor water loss, predict likely outcome and select appropriate decisions.
The aim of this paper is to determine a mathematical model which establishes the relationship between ozone levels together with other meteorological data and air quality. The model is valid for any season and for any area and is based on real-time data measured in Bucharest and its surroundings. This study is based on research using artificial neural networks to model nonlinear relationships between the concentration of immission of ozone and the meteorological factors: relative humidity (RH), global solar radiation (SR), air temperature (TEMP). The ozone concentration depends on following primary pollutants: nitrogen oxides (NO, NO2), carbon monoxide (CO). To achieve this, the Levenberg-Marquardt algorithm was implemented in Scilab, a numerical computation software. Performed sensitivity tests proved the robustness of the model and its applicability in predicting the ozone on short-term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.