Summary Accurate pathological diagnosis is crucial for optimal management of cancer patients. For the ~100 known central nervous system (CNS) tumour entities, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter-observer variability in the histopathological diagnosis of many tumour types. We herein present the development of a comprehensive approach for DNA methylation-based CNS tumour classification across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that availability of this method may have substantial impact on diagnostic precision compared with standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility we have designed a free online classifier tool (www.molecularneuropathology.org) requiring no additional onsite data processing. Our results provide a blueprint for the generation of machine learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.
We report that B cell–activating factor of the tumor necrosis factor (TNF) family (BAFF) is expressed in the normal human brain at ∼10% of that in lymphatic tissues (tonsils and adenoids) and is produced by astrocytes. BAFF was regularly detected by enzyme-linked immunosorbent assay in brain tissue lysates and in normal spinal fluid, and in astrocytes by double fluorescence microscopy. Cultured human astrocytes secreted functionally active BAFF after stimulation with interferon-γ and TNF-α via a furin-like protease-dependent pathway. BAFF secretion per cell was manifold higher in activated astrocytes than in monocytes and macrophages. We studied brain lesions with B cell components, and found that in multiple sclerosis plaques, BAFF expression was strongly up-regulated to levels observed in lymphatic tissues. BAFF was localized in astrocytes close to BAFF-R–expressing immune cells. BAFF receptors were strongly expressed in situ in primary central nervous system (CNS) lymphomas. This paper identifies astrocytes as a nonimmune source of BAFF. CNS-produced BAFF may support B cell survival in inflammatory diseases and primary B cell lymphoma.
Background Medical treatment in Cushing’s disease (CD) is limited due to poor understanding of its pathogenesis. Pathogenic variants of ubiquitin specific peptidase 8 (USP8) have been confirmed as causative in around half of corticotroph tumors. We aimed to further characterize the molecular landscape of those CD tumors lacking USP8 mutations in a large cohort of patients. Methods Exome sequencing was performed on 18 paired tumor–blood samples with wild-type USP8 status. Candidate gene variants were screened by Sanger sequencing in 175 additional samples. The most frequent variant was characterized by further functional in vitro assays. Results Recurrent somatic hotspot mutations in another deubiquitinase, USP48, were found in 10.3% of analyzed samples. Several possibly damaging variants were found in TP53 in 6 of 18 samples. USP48 variants were associated with smaller tumors and trended toward higher frequency in female patients. They also changed the structural conformation of USP48 and increased its catalytic activity toward its physiological substrates histone 2A and zinc finger protein Gli1, as well as enhanced the stimulatory effect of corticotropin releasing hormone (CRH) on pro-opiomelanocortin production and adrenocorticotropic hormone secretion. Conclusions USP48 pathogenic variants are relatively frequent in USP8 wild-type tumors and enhance CRH-induced hormone production in a manner coherent with sonic hedgehog activation. In addition, TP53 pathogenic variants may be more frequent in larger CD tumors than previously reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.