Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.SVV is a relapsing-remitting autoinflammatory disorder leading to necrotic inflammation of small-sized blood vessels and capillaries 1 . ANCAs directed against granule proteins of neutrophils, namely against PR3 in Wegener's granulomatosis and MPO in microscopic polyangiitis, are implicated in the pathogenesis of SVV 2 . In vitro studies have demonstrated an activating effect of ANCAs on cytokine-primed neutrophils 3 , which was further corroborated by animal models of these diseases 4,5 . However, the basic mechanism that induces the life-threatening exacerbations of vasculitis and the sustained autoimmune response against neutrophil components remains elusive.A unique type of cell death of neutrophil granulocytes has recently been discovered that is characterized by the active release of chromatin fibers, so-called NETs, that trap and kill invading microbes extracellularly 6 . However, this glutinous DNA web can also stick to the endothelium and cause tissue damage during sepsis 7 , similar to neutrophil-induced As ANCA can activate the respiratory burst by binding to PR3 or MPO on the neutrophil surface 3 , we examined whether ANCA-mediated activation of neutrophils induces NET formation. We primed isolated neutrophils with tumor necrosis factor-α and incubated them with purified IgG from individuals with SVV or healthy donors as performed previously 3 . We observed robust NET formation (as determined by immunofluorescence 6,8; Supplementary Methods online) in neutrophils incubated with ANCA-IgG (Fig. 1a and Supplementary Table 1 online) but not in those incubated with control IgG, in which most nuclei retained the typical lobulated structure (Fig. 1b). After 180 min, we found that 23% of neutrophils incubated with ANCA-IgG produced NETs, compared to 11% of control IgG-treated neutrophils (Fig. 1c). Incubation with phorbol 12-myristate 13-acetate (PMA), known as a strong inducer of NETs, triggered NET production in 38% of all neutrophils (Fig. 1c). We also induced NETs with a PR3-specific mouse monoclonal antibody ( Supplementary Fig. 1 online), supporting the hypothesis that PR3-specific autoantibodies within the ANCA-IgG fraction trigger NET formation. ANCA-induced cell death of neutrophils was previously regarded as a dysregulated form of apoptosis 9 , but the link to NETs had not been noticed. The morphological changes of neutrophil nuclei clearly indicated to us that ANCA-induced NETs were of nuclear rather than of mitochondrial origin, as recently desc...
We established microRNA profiles from active and inactive multiple sclerosis lesions. Using laser capture microdissection from multiple sclerosis lesions to pool single cells and in vitro cultures, we assigned differentially expressed microRNA to specific cell types. Astrocytes contained all 10 microRNA that were most strongly upregulated in active multiple sclerosis lesions, including microRNA-155, which is known to modulate immune responses in different ways but so far had not been assigned to central nervous system resident cells. MicroRNA-155 was expressed in human astrocytes in situ, and further induced with cytokines in human astrocytes in vitro. This was confirmed with astrocyte cultures from microRNA-155-|-lacZ mice. We matched microRNA upregulated in phagocytically active multiple sclerosis lesions with downregulated protein coding transcripts. This converged on CD47, which functions as a 'don't eat me' signal inhibiting macrophage activity. Three microRNA upregulated in active multiple sclerosis lesions (microRNA-34a, microRNA-155 and microRNA-326) targeted the 3'-untranslated region of CD47 in reporter assays, with microRNA-155 even at two distinct sites. Our findings suggest that microRNA dysregulated in multiple sclerosis lesions reduce CD47 in brain resident cells, releasing macrophages from inhibitory control, thereby promoting phagocytosis of myelin. This mechanism may have broad implications for microRNA-regulated macrophage activation in inflammatory diseases.
Understanding the mechanisms of immune cell migration to multiple sclerosis lesions offers significant therapeutic potential. This study focused on the chemokines CXCL12 (SDF-1) and CXCL13 (BCA-1), both of which regulate B cell migration in lymphoid tissues. We report that immunohistologically CXCL12 was constitutively expressed in CNS parenchyma on blood vessel walls. In both active and chronic inactive multiple sclerosis lesions CXCL12 protein was elevated and detected on astrocytes and blood vessels. Quantitative PCR demonstrated that CXCL13 was produced in actively demyelinating multiple sclerosis lesions, but not in chronic inactive lesions or in the CNS of subjects who had no neurological disease. CXCL13 protein was localized in perivascular infiltrates and scattered infiltrating cells in lesion parenchyma. In the CSF of relapsing-remitting multiple sclerosis patients, both CXCL12 and CXCL13 were elevated. CXCL13, but not CXCL12, levels correlated strongly with intrathecal immunoglobulin production as well as the presence of B cells, plasma blasts and T cells. About 20% of CSF CD4+ cells and almost all B cells expressed the CXCL13 receptor CXCR5. In vitro, CXCL13 was produced by monocytes and at much higher levels by macrophages. CXCL13 mRNA and protein expression was induced by TNFalpha and IL-1beta but inhibited by IL-4 and IFNgamma. Together, CXCL12 and CXCL13 are elevated in active multiple sclerosis lesions and CXCL12 also in inactive lesions. The consequences of CXCL12 up-regulation could be manifold. CXCL12 localization on blood vessels indicates a possible role in leucocyte extravasation, and CXCL12 may contribute to plasma cell persistence since its receptor CXCR4 is retained during plasma cell differentiation. CXCL12 may contribute to axonal damage as it can become a neurotoxic mediator of cleavage by metalloproteases, which are present in multiple sclerosis lesions. The strong linkage of CXCL13 to immune cells and immunoglobulin levels in CSF suggests that this is one of the factors that attract and maintain B and T cells in inflamed CNS lesions. Therefore, both CXCL13 and CXCR5 may be promising therapeutic targets in multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.