Theoretical (ab initio calculations) and experimental (NMR, spectrophotometric, and potentiometric measurements) investigations of the isomers of acetohydroxamic acid (AHA) and their deprotonation processes have been performed. Calculations with the Gaussian 98 package, refined at the MP2(FC)/AUG-cc-pVDZ level considering the molecule isolated, indicate that the Z(cis) amide is the most stable form of the neutral molecule. This species and the less stable (Z)-imide form undergo deprotonation, giving rise to two stable anions. Upon deprotonation, the E(trans) forms give three stable anions. The ab initio calculations were performed in solution as well, regarding water as a continuous dielectric; on the basis of the relative energies of the most stable anion and neutral forms, calculated with MP2/PCM/AUG-cc-pVDZ, N-deprotonation of the amide (Z or E) structure appeared to be the most likely process in solution. NMR measurements provided evidence for the existence of (Z)- and (E)-isomers of both the neutral and anion forms in solution. Comparisons of the dynamic NMR and NOESY (one-dimensional) results obtained for the neutral species and their anions were consistent with N-deprotonation, which occurred preferentially to O-deprotonation. The (microscopic) acid dissociation constants of the two isomers determined at 25 degrees C from the pH dependence of the relevant chemical shifts, pK(E) = 9.01 and pK(Z) = 9.35, were consistent with the spectrophotometric and potentiometric evaluations (pK(HA) = 9.31).
A theoretical and experimental study on the structure and deprotonation of benzohydroxamic acid (BHA) has been performed. Calculations at the RHF/cc-pVDZ level, refined by the B3LYP/AUG-cc-pVDZ method, indicate that, in the gas phase, Z amide is the most stable structure of both neutral and deprotonated BHA. (1)H-(1)H nuclear Overhauser enhancement spectroscopy and (1)H-(1)H correlation spectroscopy spectra in acetone, interpreted with ab initio interatomic distances, reveal that BHA is split into the Z and E forms, the [E]/[Z] ratio being 75:25 at -80 degrees C. The formation of E-E, Z-Z, and E-Z dimers has been detected; in the presence of water, the dimers dissociate to the corresponding monomers. The rates of proton exchange within the Z and E forms and between E and Z were measured by dynamic (1)H NMR in the -60 to 40 degrees C temperature range; an increase in water content lowers the rate of exchange of the E isomer. The effect of D(2)O on the NMR signals indicates a fast hydrogen exchange between D(2)O and the E and Z amide forms. The sequence of the acid strength at low temperatures is (N)H(E)) approximately (O)H(E) < (O)H(Z) approximately (N)H(Z). The kinetics of complex formation between BHA and Ni(2+), investigated by the stopped-flow method, show that both neutral BHA and its anion can bind Ni(2+). Whereas the anion reacts at a "normal" speed, the rate of water replacement from Ni(H(2)O)(6)(2+) by neutral BHA is about 1 order of magnitude less than expected. This behavior was interpreted assuming that, in aqueous solution, BHA mainly adopts a closed (hydrogen-bonded) Z configuration, which should open (with an energy penalty) for the metal binding process to occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.