Integrable deformations of a Hamilton-Poisson system can be obtained altering its constants of motion. These deformations are integrable systems that can have various dynamical properties. In this paper, we give integrable deformations of the KermackMcKendrick model for epidemics, and we analyze a particular integrable deformation. More precisely, we point out two Poisson structures that lead to infinitely many Hamilton-Poisson realizations of the considered system. Furthermore, we study the stability of the equilibrium points, we give the image of the energy-Casimir mapping, and we point out some of its properties.
The goal of our paper is to complete some results presented by Craioveanu et al. (1998) concerning the nonlinear stability of the equilibrium states of the car with two trailers’ dynamics. In addition, the Lax formulation, numerical integration via Lie-Trotter, and Kahan’s integrator for these dynamics are presented.
The main goal of this paper is to present an analytical integration in connection with the geometrical frame given by the Hamilton–Poisson formulation of a specific case of Chen’s system. In this special case we construct an analytic approximate solution using the Multistage Optimal Homotopy Asymptotic Method (MOHAM). Numerical simulations are also presented in order to make a comparison between the analytic approximate solution and the corresponding numerical solution.
Altering the first integrals of an integrable system integrable deformations of the given system are obtained. These integrable deformations are also integrable systems, and they generalize the initial system. In this paper we give a method to construct integrable deformations of maximally superintegrable Hamiltonian mechanical systems with two degrees of freedom. An integrable deformation of a maximally superintegrable Hamiltonian mechanical system preserves the number of first integrals, but is not a Hamiltonian mechanical system, generally. We construct integrable deformations of the maximally superintegrable Hamiltonian mechanical system that describes the motion of two vortices in an ideal incompressible fluid, and we show that some of these integrable deformations are Hamiltonian mechanical systems tooHamiltonian mechanical system used to model the motion of two vortices in an ideal incompressible fluid, and we show that under some conditions such an integrable deformation is also a Hamiltonian mechanical system.
Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz 66 (2021) APPLICATIONS OF MATHEMATICS No. 3,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.