Stress and depression are a common affliction in all walks of life. When left unmanaged, stress can inhibit productivity or cause depression. Depression can occur independently of stress. There has been a sharp rise in mobile health initiatives to monitor stress and depression. However, these initiatives usually require users to install dedicated apps or multiple sensors, making such solutions hard to scale. Moreover, they emphasise sensing individual factors and overlook social interactions, which plays a significant role in influencing stress and depression while being a part of a social system. We present StressMon, a stress and depression detection system that leverages single-attribute location data, passively sensed from the WiFi infrastructure. Using the location data, it extracts a detailed set of movement, and physical group interaction pattern features without requiring explicit user actions or software installation on client devices. These features are used in two different machine learning models to detect stress and depression. To validate StressMon, we conducted three different longitudinal studies at a university with different groups of students, totalling up to 108 participants. Our evaluation demonstrated StressMon detecting severely stressed students with a 96.01% True Positive Rate (TPR), an 80.76% True Negative Rate (TNR), and a 0.97 area under the ROC curve (AUC) score (a score of 1 indicates a perfect binary classifier) using a 6-day prediction window. In addition, StressMon was able to detect depression at 91.21% TPR, 66.71% TNR, and 0.88 AUC using a 15-day window. We end by discussing how StressMon can expand CSCW research, especially in areas involving collaborative practices for mental health management.
Mobile sensing has played a key role in providing digital solutions to aid with COVID-19 containment policies, primarily to automate contact tracing and social distancing measures. As more and more countries reopen from lockdowns, there remains a pressing need to minimize crowd movements and interactions, particularly in enclosed spaces. Many COVID-19 technology solutions leverage positioning systems, generally using Bluetooth and GPS, and can theoretically be adapted to monitor safety compliance within dedicated environments. However, they may not be the ideal modalities for indoor positioning. This paper conjectures that analyzing user occupancy and mobility via deployed WiFi infrastructure can help institutions monitor and maintain safety compliance according to the public health guidelines. Using smartphones as a proxy for user location, our analysis demonstrates how coarse-grained WiFi data can sufficiently reflect the indoor occupancy spectrum when different COVID-19 policies were enacted. Our work analyzes staff and students’ mobility data from three university campuses. Two of these campuses are in Singapore, and the third is in the Northeastern United States. Our results show that online learning, split-team, and other space management policies effectively lower occupancy. However, they do not change the mobility for individuals transitioning between spaces. We demonstrate how this data source can be a practical application for institutional crowd control and discuss the implications of our findings for policy-making.
Contact tracing is a well-established and effective approach for the containment of the spread of infectious diseases. While Bluetooth-based contact tracing method using phones has become popular recently, these approaches suffer from the need for a critical mass adoption to be effective. In this paper, we present WiFiTrace, a network-centric approach for contact tracing that relies on passive WiFi sensing with no client-side involvement. Our approach exploits WiFi network logs gathered by enterprise networks for performance and security monitoring, and utilizes them for reconstructing device trajectories for contact tracing. Our approach is specifically designed to enhance the efficacy of traditional methods, rather than to supplant them with new technology. We designed an efficient graph algorithm to scale our approach to large networks with tens of thousands of users. The graph-based approach outperforms an indexed PostgresSQL in memory by at least 4.5X without any index update overheads or blocking. We have implemented a full prototype of our system and deployed it on two large university campuses. We validated our approach and demonstrate its efficacy using case studies and detailed experiments using real-world WiFi datasets.
Proper indoor ventilation through buildings' heating, ventilation, and air conditioning (HVAC) systems has become an increasing public health concern that significantly impacts individuals' health and safety at home, work, and school. While much work has progressed in providing energy-efficient and user comfort for HVAC systems through IoT devices and mobile-sensing approaches, ventilation is an aspect that has received lesser attention despite its importance. With a motivation to monitor airflow from building ventilation systems through commodity sensing devices, we present FlowSense, a machine learning-based algorithm to predict airflow rate from sensed audio data in indoor spaces. Our ML technique can predict the state of an air vent---whether it is on or off---as well as the rate of air flowing through active vents. By exploiting a low-pass filter to obtain low-frequency audio signals, we put together a privacy-preserving pipeline that leverages a silence detection algorithm to only sense sounds of from HVAC air vents when no human speech is detected. We also propose the Minimum Persistent Sensing (MPS) as a post-processing algorithm to reduce interference from ambient noise, including ongoing human conversation, office machines, and traffic noises. Together, these techniques ensure user privacy and improve the robustness of FlowSense. We validate our approach yielding over 90% accuracy in predicting vent status and 0.96 MSE in predicting airflow rate when the device is placed within 2.25 meters away from an air vent. Our approach can be generalized to environments with similar vent dimensions and geometry outlets. Additionally, we demonstrate how our approach as a mobile audio-sensing platform is robust to smartphone models, distance, and orientation. Finally, we evaluate FlowSense privacy-preserving pipeline through a user study and a Google Speech Recognition service, confirming that the audio signals we used as input data are inaudible and inconstructible.
The availability of commercial wearable trackers equipped with features to monitor sleep duration and quality has enabled more useful sleep health monitoring applications and analyses. However, much research has reported the challenge of long-term user retention in sleep monitoring through these modalities. Since modern Internet users own multiple mobile devices, our work explores the possibility of employing ubiquitous mobile devices and passive WiFi sensing techniques to predict sleep duration as the fundamental measure for complementing long-term sleep monitoring initiatives. In this paper, we propose SleepMore, an accurate and easy-to-deploy sleep-tracking approach based on machine learning over the user's WiFi network activity. It first employs a semi-personalized random forest model with an infinitesimal jackknife variance estimation method to classify a user's network activity behavior into sleep and awake states per minute granularity. Through a moving average technique, the system uses these state sequences to estimate the user's nocturnal sleep period and its uncertainty rate. Uncertainty quantification enables SleepMore to overcome the impact of noisy WiFi data that can yield large prediction errors. We validate SleepMore using data from a month-long user study involving 46 college students and draw comparisons with the Oura Ring wearable. Beyond the college campus, we evaluate SleepMore on non-student users of different housing profiles. Our results demonstrate that SleepMore produces statistically indistinguishable sleep statistics from the Oura ring baseline for predictions made within a 5% uncertainty rate. These errors range between 15-28 minutes for determining sleep time and 7-29 minutes for determining wake time, proving statistically significant improvements over prior work. Our in-depth analysis explains the sources of errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.