The mechanisms by which prenatal immune activation increase risk for neuropsychiatric disorders are unclear. Here, we generated developmental cortical interneurons (cINs), known to be affected in schizophrenia (SCZ) when matured, from induced pluripotent stem cells (iPSCs) from healthy controls (HC) and SCZ patients, and cocultured them with or without activated microglia. Coculture with activated microglia disturbed metabolic pathways, as indicated by unbiased transcriptome analysis, and impaired mitochondrial function, arborization, synapse formation and synaptic GABA release. Deficits in mitochondrial function and arborization were reversed by Alpha Lipoic Acid/Acetyl-L-Carnitine (ALA/ALC) treatments that boost mitochondrial function. Notably, activated microglia-conditioned medium altered metabolism in cINs and HC-derived iPSCs but not in SCZ-patient-derived iPSCs or in glutamatergic neurons. After removal of activated microglia-conditioned medium, SCZ cINs but not HC cINs showed prolonged metabolic deficits, suggesting an interaction between SCZ genetic backgrounds and environmental risk factors.
BackgroundResponsive neurostimulation (RNS System) has been utilized as a treatment for intractable epilepsy. The RNS System delivers stimulation in response to detected abnormal activity, via leads covering the seizure foci, in response to detections of predefined epileptiform activity with the goal of decreasing seizure frequency and severity. While thalamic leads are often implanted in combination with cortical strip leads, implantation and stimulation with bilateral thalamic leads alone is less common, and the ability to detect electrographic seizures using RNS System thalamic leads is uncertain.ObjectiveThe present study retrospectively evaluated fourteen patients with RNS System depth leads implanted in the thalamus, with or without concomitant implantation of cortical strip leads, to determine the ability to detect electrographic seizures in the thalamus. Detailed patient presentations and lead trajectories were reviewed alongside electroencephalographic (ECoG) analyses.ResultsAnterior nucleus thalamic (ANT) leads, whether bilateral or unilateral and combined with a cortical strip lead, successfully detected and terminated epileptiform activity, as demonstrated by Cases 2 and 3. Similarly, bilateral centromedian thalamic (CMT) leads or a combination of one centromedian thalamic alongside a cortical strip lead also demonstrated the ability to detect electrographic seizures as seen in Cases 6 and 9. Bilateral pulvinar leads likewise produced reliable seizure detection in Patient 14. Detections of electrographic seizures in thalamic nuclei did not appear to be affected by whether the patient was pediatric or adult at the time of RNS System implantation. Sole thalamic leads paralleled the combination of thalamic and cortical strip leads in terms of preventing the propagation of electrographic seizures.ConclusionThalamic nuclei present a promising target for detection and stimulation via the RNS System for seizures with multifocal or generalized onsets. These areas provide a modifiable, reversible therapeutic option for patients who are not candidates for surgical resection or ablation.
During development, cortical interneurons (cINs) are generated from the ventral telencephalon, robustly migrate to the dorsal telencephalon, make local synaptic connections, and critically regulate brain circuitry by inhibiting other neurons. Thus, their abnormality is associated with various brain disorders. Human pluripotent stem cell (hPSC)-derived cINs can provide unlimited sources with which to study the pathogenesis mechanism of these disorders as well as provide a platform to develop novel therapeutics. By employing spinner culture, we could obtain a >10-fold higher yield of cIN progenitors compared to conventional culture without affecting their phenotype. Generated cIN spheres can be maintained feeder-free up to 10 months and are optimized for passaging and cryopreservation. In addition, we identified a combination of chemicals that synchronously matures generated progenitors into SOX6
+
KI67
−
migratory cINs and extensively characterized their maturation in terms of metabolism, migration, arborization, and electrophysiology. When transplanted into mouse brains, chemically matured migratory cINs generated grafts that efficiently disperse and integrate into the host circuitry without uncontrolled growth, making them an optimal cell population for cell therapy. Efficient large-scale generation of homogeneous migratory cINs without the need of feeder cells will play a critical role in the full realization of hPSC-derived cINs for development of novel therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.