Nitric oxide (NO • ) competitively inhibits oxygen consumption by mitochondria at cytochrome c oxidase and S-nitrosates thiol proteins. We developed mitochondria-targeted S-nitrosothiols (MitoSNOs) that selectively modulate and protect mitochondrial function. The exemplar MitoSNO1, produced by covalently linking an Snitrosothiol to the lipophilic triphenylphosphonium cation, was rapidly and extensively accumulated within mitochondria, driven by the membrane potential, where it generated NO • and Snitrosated thiol proteins. MitoSNO1-induced NO • production reversibly inhibited respiration at cytochrome c oxidase and increased extracellular oxygen concentration under hypoxic conditions. MitoSNO1 also caused vasorelaxation due to its NO • generation. Infusion of MitoSNO1 during reperfusion was protective against heart ischemia-reperfusion injury, consistent with a functional modification of mitochondrial proteins, such as complex I, following S-nitrosation. These results support the idea that selectively targeting NO • donors to mitochondria is an effective strategy to reversibly modulate respiration and to protect mitochondria against ischemia-reperfusion injury.nitric oxide ͉ S-nitrosation
High-resolution X-ray diffraction data, in conjunction with DFT(B3LYP) quantum calculations, have been used in a QTAIM analysis of the charge density in the trimethylenemethane (TMM) complex Fe(eta(4)-C[CH(2)](3))(CO)(3). The agreement between the theoretical and experimental topological properties is excellent. Only one bond path is observed between the TMM ligand and the Fe atom, from the central C(alpha) atom. However, much evidence, including from the delocalization indices and the source function, suggests that there is a strong chemical interaction between the Fe and C(beta) atoms, despite the formal lack of chemical bonding according to QTAIM.
Experimental charge densities for (C(5)H(5))Mn(CO)(3) (2), (eta(6)-C(6)H(6))Cr(CO)(3) (3), and (E)-{(eta(5)-C(5)H(4))CF=CF(eta(5)-C(5)H(4))}(eta(5)-C(5)H(5))(2)Fe(2) (4) have been obtained by multipole refinement of high-resolution X-ray diffraction data at 100 K. The resultant densities were analyzed using the quantum theory of atoms in molecules (QTAIM). The electronic structures of these and related pi-hydrocarbyl complexes have also been studied by ab initio density functional theory calculations, and a generally good agreement between theory and experiment with respect to the topological parameters was observed. The topological parameters indicate significant metal-ring covalency. A consistent area of disagreement concerns the topology of the metal-ring interactions. It is shown that because of the shared-shell bonding between the metal and the ring carbons, an annulus of very flat density rho and very small wedge rho is formed, which leads to topologically unstable structures close to catastrophe points. This in turn leads to unpredictable numbers of metal-C bond paths for ring sizes greater than four and fewer M-C bond paths than expected on the basis of the formal hapticity. This topological instability is a general feature of metal-pi-hydrocarbyl interactions and means that a localized approach based on individual M-C(ring) bond paths does not provide a definitive picture of the chemical bonding in these systems. However, other QTAIM indicators, such as the virial paths, the delocalization indices, and the source function, clearly demonstrate that for the n-hapto (eta(n)-C(n)H(n))M unit, there is generally a very similar level of chemical bonding for all M-C(ring) interactions, as expected on the basis of chemical experience.
SummaryThe mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by “click” chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.