Recently, wind turbine research has switched focus to vertical axis wind turbines due to the extensive research that has been performed on horizontal axis wind turbines and the potential of vertical axis wind turbines in built-up areas. This study aims to analyse the performance of a small-scale hybrid vertical axis wind turbine that can switch from functioning as a Darrieus (lift) turbine to a Savonius (drag) turbine by rotating the blades. The turbine was analysed using 3D computational fluid dynamics (CFD) simulations in ANSYS Fluent as the primary method, and the findings were verified using wind tunnel experiments. During the analysis, design parameters such as the blade length, diameter, and number of blades were varied to determine if the design had room for improvement. It was found that the current design of the turbine has an optimal efficiency of 12.5% in the Darrieus configuration, which was found to increase when the diameter or blade length was increased. The Savonius configuration was found to be more efficient at low tip-speed ratios (<0.14), and its efficiency could be increased by adding more blades. The experiments found similar trends to the simulations; however, the efficiencies obtained were on average a tenfold increase from the simulation. Implementing the changes that increased efficiency leads to an increased wake recovery distance, making it less suitable for use in a wind farm.
This study investigated the impact of ice formation on the performance and aerodynamics of a vertical axis wind turbine (VAWT). This is an area that is becoming more prevalent as VAWTs are installed alongside horizontal axis wind turbines (HAWTs) in high altitude areas with cold and wet climates where ice is likely to form. Computational fluid dynamics (CFD) simulations were performed on a VAWT without icing in Ansys to understand its performance before introducing ice shapes obtained through the LewInt ice accretion software and repeating simulations in Ansys. These simulations were verified by performing a wind tunnel experiment on a scale VAWT model with and without 3D printed ice shapes attached to the blades. The clean blade simulations found that wind speed had little impact on the performance, while reducing the blade scale severely reduced performance. The ice formation simulations found that increasing the icing time or liquid water content (LWC) led to increased ice thickness. Additionally, glaze ice and rime ice conditions were investigated, and it was found that rime ice conditions that occur in lower temperatures caused more ice to form. The simulations with the attached ice shapes found a maximum reduction in performance of 40%, and the experiments found that the ice shapes made the VAWT unable to produce power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.