Formation of many dsDNA viruses begins with the assembly of a procapsid, containing scaffolding proteins and a multisubunit portal but lacking DNA, which matures into an infectious virion. This process, conserved among dsDNA viruses such as herpes viruses and bacteriophages, is key to forming infectious virions. Bacteriophage P22 has served as a model system for this study in the past several decades. However, how capsid assembly is initiated, where and how scaffolding proteins bind to coat proteins in the procapsid, and the conformational changes upon capsid maturation still remain elusive. Here, we report Cα backbone models for the P22 procapsid and infectious virion derived from electron cryomicroscopy density maps determined at 3.8-and 4.0-Å resolution, respectively, and the first procapsid structure at subnanometer resolution without imposing symmetry. The procapsid structures show the scaffolding protein interacting electrostatically with the N terminus (N arm) of the coat protein through its C-terminal helix-loop-helix motif, as well as unexpected interactions between 10 scaffolding proteins and the 12-fold portal located at a unique vertex. These suggest a critical role for the scaffolding proteins both in initiating the capsid assembly at the portal vertex and propagating its growth on a T ¼ 7 icosahedral lattice. Comparison of the procapsid and the virion backbone models reveals coordinated and complex conformational changes. These structural observations allow us to propose a more detailed molecular mechanism for the scaffolding-mediated capsid assembly initiation including portal incorporation, release of scaffolding proteins upon DNA packaging, and maturation into infectious virions.sDNA viruses infecting both prokaryotes and eukaryotes share a common assembly pathway proceeding from a precursor (procapsid) to an infectious virion (1-4). In addition to the coat proteins, the procapsid requires scaffolding proteins, absent from the virion, for proper assembly, and a portal for DNA packaging and subsequent DNA ejection. However, despite a half-century of research on icosahedral viruses, it remains unclear how initially identical subunits adopt both hexameric and pentameric conformations in the virus and select the correct locations needed to form closed shells of the proper size (5). Packaging of DNA through the portal is accompanied by the exit of scaffolding proteins from the procapsid and conformational changes in the coat proteins as the capsid matures (2, 6).Understanding the molecular mechanisms of dsDNA virus assembly and maturation requires knowledge of the interactions among the coat, scaffolding, and portal proteins, all of which are essential for these processes. X-ray crystallography (7-9) and electron cryomicroscopy (cryo-EM) (10-12) have yielded nearatomic to atomic resolution models of several dsDNA icosahedral viruses and provided a structural framework of interactions among their coat proteins. However, the structural details of procapsid portal incorporation, scaffolding protein bind...
Amino acid substitutions at a site in the center of the bacteriophage protein P22 tailspike polypeptide chain suppress temperature-sensitive folding mutations at many sites throughout the chain. Characterization of the intracellular folding and chain assembly process reveals that the suppressors act in the folding pathway, inhibiting the aggregation of an early folding intermediate into the kinetically trapped inclusion body state. The suppressors alone increase the folding efficiency of the otherwise wild-type polypeptide chain without altering the stability or activity of the native state. These amino acid substitutions identify an unexpected aspect of the protein folding grammar--sequences within the chain that carry information inhibiting unproductive off-pathway conformations. Such mutations may serve to increase the recovery of protein products of cloned genes.
Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.ecently, cryo-EM maps with associated atomic coordinates have been reported at resolutions better than 4 Å (1, 2). However, few have been subjected to rigorous evaluation of the reliability of the observed features or of the correlation between the experimental map and its corresponding model at the residue level. Typically, such correlation is reported in terms of a curve known as the Fourier shell correlation (FSC), which is a function of spatial frequency (3, 4). Although informative, it does not assure the authenticity of local features, nor does it indicate which features in the model agree or disagree with observed density. Ideally, a molecular model can be used to generate a map that replicates the experimental map in most or all of its details, and thus constitutes a trustworthy and informative model for the specimen's structure at the reported resolution. This study examines the agreement and/or disagreement between the model and the experimental map density, determined at nearatomic resolution. These efforts establish the groundwork for a quantitative assessment of a cryo-EM structure. The methods described here were applied to the capsid of P22 bacteriophage, which infects Salmonella and has been extensively studied through biochemistry, genetics, and biophysics (5-8). ResultsCryo-EM Images and Reconstructions. To study the P22 structure, we used a 300-keV electron cryomicroscope (JEM-3200FSC; JEOL Ltd.) and a Direct Electron detector (DE-20; operated in integrating mode) to collect frozen, hydrated P22 bacteriophage images (Fig. 1A and Table S1). Signal was detectable out to 3-Å resolution ( Fig. S1 and Movie S1). A total exposure of 37.5 e − /Å 2 was fractionated into 24 frames during a 1.5-s exposure. All frames were dose-weighted (4) and used to refine particle orientation parameters; empirically, we found that using image frames 1 to 6 (a cumulative exposu...
SummaryCyanobacteria are photosynthetic organisms responsible for ~25% of organic carbon fixation on earth. These bacteria began to convert solar energy and carbon dioxide into bioenergy and oxygen billions of years ago. Cyanophages, which infect these bacteria, play an important role in regulating the marine ecosystem by controlling cyanobacteria community organization and mediating lateral gene transfer. Here we visualize the maturation process of cyanophage Syn5 inside its host cell, Synechococcus, using Zernike Phase Contrast (ZPC) electron cryo-tomography (cryoET) 1,2 . This imaging modality yields significant enhancement of image contrast over conventional cryoET and thus facilitates the direct identification of subcellular components, including thylakoid membranes, carboxysomes and polyribosomes, as well as phages, inside the congested cytosol of the infected cell. By correlating the structural features and relative abundance of viral progeny within cells at different stages of infection, we identified distinct Syn5 assembly Users may view, print, copy, download and text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms The averaged density maps of the procapsid, expanded capsid and the DNA-containing capsid have been deposited in the EBI under accession codes EMD-5742, EMD-5743, EMD-5744, EMD-5745, and EMD-5746, respectively. The authors declare no competing financial interests.Supplementary Information is linked to the online version of the paper at www.nature.com/nature. Fig. 1a-b) are roughly concentric, the thylakoid membrane does not fully enclose the inner compartment of the cell, nor does it seem to directly interact with the cell membrane. This differs from the organization seen in other cyanobacteria 9,10 . Cyanobacteria also contain carboxysomes, polyhedral compartments encapsulating enzymes for carbon fixation 11,12 . Each WH8109 cell has, on average, four or five carboxysomes, with diameters ranging from 920 to 1160Å (Fig. 1c). Ribosomes are abundant and widespread, forming numerous intracellular patches that contain polyribosomes (Fig. 1d). HHS Public AccessCyanophage Syn5 that infects WH8109 cells is a short-tailed icosahedral phage with a unique horn appendage at the vertex opposite to the tail 13 (Extended Data Fig. 2). Initial segmentation of our tomograms of infected cells identified Syn5 particles on the cell surface, floating in the extracellular medium, and Syn5 progeny inside the cell. Multiple full and empty phage particles are seen attached to the cell surface. Injection of viral DNA occurs at multiple sites on the bacterial envelope and does not appear to be a coordinated process. Fig. 1e shows a tubular density extending from the phage tail through the periplasm to the cytoplasm (Supplementary video 4), similar to observations in other phage-infected bacteria 14,15 . As infection progresses, increasing numbers of Syn5 phage progeny ...
Cataract is the leading cause of blindness in the world. It results from aggregation of eye lens proteins into high-molecular-weight complexes, causing light scattering and lens opacity. Copper and zinc concentrations in cataractous lens are increased significantly relative to a healthy lens, and a variety of experimental and epidemiological studies implicate metals as potential etiological agents for cataract. The natively monomeric, β-sheet rich human γD (HγD) crystallin is one of the more abundant proteins in the core of the lens. It is also one of the most thermodynamically stable proteins in the human body. Surprisingly, we found that both Cu(II) and Zn(II) ions induced rapid, nonamyloid aggregation of HγD, forming high-molecular-weight light-scattering aggregates. Unlike Zn(II), Cu(II) also substantially decreased the thermal stability of HγD and promoted the formation of disulfide-bridged dimers, suggesting distinct aggregation mechanisms. In both cases, however, metal-induced aggregation depended strongly on temperature and was suppressed by the human lens chaperone αB-crystallin (HαB), implicating partially folded intermediates in the aggregation process. Consistently, distinct site-specific interactions of Cu(II) and Zn(II) ions with the protein and conformational changes in specific hinge regions were identified by nuclear magnetic resonance. This study provides insights into the mechanisms of metal-induced aggregation of one of the more stable proteins in the human body, and it reveals a novel and unexplored bioinorganic facet of cataract disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.