Galaxy is a mature, browser accessible workbench for scientific computing. It enables scientists to share, analyze and visualize their own data, with minimal technical impediments. A thriving global community continues to use, maintain and contribute to the project, with support from multiple national infrastructure providers that enable freely accessible analysis and training services. The Galaxy Training Network supports free, self-directed, virtual training with >230 integrated tutorials. Project engagement metrics have continued to grow over the last 2 years, including source code contributions, publications, software packages wrapped as tools, registered users and their daily analysis jobs, and new independent specialized servers. Key Galaxy technical developments include an improved user interface for launching large-scale analyses with many files, interactive tools for exploratory data analysis, and a complete suite of machine learning tools. Important scientific developments enabled by Galaxy include Vertebrate Genome Project (VGP) assembly workflows and global SARS-CoV-2 collaborations.
Transcriptome sequencing has opened the field of genomics to a wide variety of researchers, owing to its efficiency, applicability across species and ability to quantify gene expression. The resulting datasets are a rich source of information that can be mined for many years into the future, with each dataset providing a unique angle on a specific context in biology. Maintaining accessibility to this accumulation of data presents quite a challenge for researchers. The primary focus of conventional genomics databases is the storage, navigation and interpretation of sequence data, which is typically classified down to the level of a species or individual. The addition of expression data adds a new dimension to this paradigm – the sampling context. Does gene expression describe different tissues, a temporal distribution or an experimental treatment? These data not only describe an individual, but the biological context surrounding that individual. The structure and utility of a transcriptome database must therefore reflect these attributes. We present an online database which has been designed to maximise the accessibility of crustacean transcriptome data by providing intuitive navigation within and between datasets and instant visualization of gene expression and protein structure. The site is accessible at https://crustybase.org and currently holds 10 datasets from a range of crustacean species. It also allows for upload of novel transcriptome datasets through a simple web interface, allowing the research community to contribute their own data to a pool of shared knowledge.
Sexual development involves the successive and overlapping processes of sex determination, sexual differentiation, and ultimately sexual maturation, enabling animals to reproduce. This provides a mechanism for enriched genetic variation which enables populations to withstand ever-changing environments, selecting for adapted individuals and driving speciation. The molecular mechanisms of sexual development display a bewildering diversity, even in closely related taxa. Many sex determination mechanisms across animals include the key family of “doublesex- and male abnormal3-related transcription factors” (Dmrts). In a few exceptional species, a single Dmrt residing on a sex chromosome acts as the master sex regulator. In this study, we provide compelling evidence for this model of sex determination in the ornate spiny lobster Panulius ornatus, concurrent with recent reports in the eastern spiny lobster Sagmariasus verreauxi. Using a multi-tissue transcriptomic database established for P. ornatus, we screened for the key factors associated with sexual development (by homology search and using previous knowledge of these factors from related species), providing an in-depth understanding of sexual development in decapods. Further research has the potential to close significant gaps in our understanding of reproductive development in this ecologically and commercially significant order.
Background The Crustacea are an evolutionarily diverse taxon which underpins marine food webs and contributes significantly to the global economy. However, our knowledge of crustacean endocrinology and development is far behind that of terrestrial arthropods. Here we present a unique insight into the molecular pathways coordinating crustacean metamorphosis, by reconciling nuclear receptor (NR) gene activity from a 12-stage, 3-replicate transcriptome in the ornate spiny lobster (Panulirus ornatus) during larval development. Results We annotated 18 distinct nuclear receptor genes, including three novel NRs which are upregulated prior to metamorphosis and have hence been named the “molt-associated receptors” (MARs). We also demonstrate the ecdysone-responsive expression of several known molt-related NRs including ecdysone receptor, fushi-tarazu-F1 and E75. Phylogenetic analysis of the curated NR family confirmed gene annotations and suggested that the MARs are a recent addition to the crustacean superfamily, occurring across the Malacostraca from the Stomatopoda to the Decapoda. The ligand-binding domain of these receptors appears to be less conserved than that of typical group-1 NRs. Expression data from two other crustacean species was utilized to examine MAR expression. The Y-organ of the tropical land crab showed a decline in expression of all MARs from intermolt to post-molt. Tissue distributions showed gonad-enriched expression in the Eastern rock lobster and antennal gland-enriched expression in the tropical land crab, although expression was evident across most tissues. Conclusion By mining transcriptome data, we have curated an extensive list of NR genes expressed during the metamorphic molts of P. ornatus, including three novel crustacean NRs which appear to play a role in the molting process. Divergence of the E-region of these new receptors indicates that they may have adopted a function that is unconventional for NRs. Based on expression patterns, we can confirm that a number of NRs play a role in the ecdysone cassette which regulates molting in crustaceans. This study describes in detail the molecular events surrounding crustacean molting and metamorphosis by taking advantage of the distinctive life history unique to achelatan crustaceans. Electronic supplementary material The online version of this article (10.1186/s12864-019-5925-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.