Nanomaterials have been explored as alternative matrices in MALDI-MS to overcome some of the limitations of conventional matrices. Recently, we demonstrated a new means by which nanomaterials can improve peptide ionization and detection in MALDI-MS analyses by exploiting the tendency of nanomaterials to form "coffee rings" upon drying from liquids. In the current work, we investigate how nanomaterial size and composition affect the signal enhancement of peptides through the coffeering effect. From studies of eight different types of nanomaterials ranging in size and composition, we find that most nanomaterials can provide signal enhancement ranging from 2-to 10-fold for individual peptides, as long as a coffee ring is formed. However, when a mixture of peptides is present in a sample, the signal enhancement is the greatest for peptides whose net charge is complementary to the nanomaterial's surface charge. These results suggest that careful design of NM surface properties could allow for selective, enhanced MALDI-MS detection of specific peptides in complex mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.