Chimeric antigen receptor (CAR) T cell therapy is rapidly emerging as one of the most promising therapies for hematologic malignancies. Two CAR T products were recently approved in the United States and Europe for the treatment of patients up to age 25 years with relapsed or refractory B cell acute lymphoblastic leukemia and/or adults with large B cell lymphoma. Many more CAR T products, as well as other immunotherapies, including various immune cell-and bispecific antibody-based approaches that function by activation of immune effector cells, are in clinical development for both hematologic and solid tumor malignancies. These therapies are associated with unique toxicities of cytokine release syndrome (CRS) and neurologic toxicity. The assessment and grading of these toxicities vary considerably across clinical trials and across institutions, making it difficult to compare the safety of different products and hindering the ability to develop optimal strategies for management of these toxicities. Moreover, some aspects of these grading systems can be challenging to implement across centers. Therefore, in an effort to harmonize the definitions and grading systems for CRS and neurotoxicity, experts from all aspects of the field met on June 20 and 21, 2018, at a meeting supported by the American Society for Transplantation and Cellular Therapy (ASTCT; formerly American Society for Blood and Marrow Transplantation, ASBMT) in Arlington, VA. Here we report the consensus recommendations of that group and propose new definitions and grading for CRS and neurotoxicity that are objective, easy to apply, and ultimately more accurately categorize the severity of these toxicities. The goal is to provide a uniform consensus grading system for CRS and neurotoxicity associated with immune effector cell therapies, for use across clinical trials and in the postapproval clinical setting.
Role of funding source: Personnel from Juno Therapeutics reviewed the draft manuscript and assisted with statistical analyses but were not involved in recruitment or clinical care of participants, performance of response assessments, or conduct of laboratory assays. Personnel from the other funding sources did not contribute to the design, conduct, or analysis of the study.
Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor (CAR)-modified T (CAR-T) cells can be complicated by neurologic adverse events (AEs) in patients with refractory B cell malignancies. In 133 adults treated with CD19 CAR-T cells we found that acute lymphoblastic leukemia, high CD19+ cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the CSF from high concentrations of systemic cytokines including IFN-γ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.